Search results for: thin films Zn(O
408 The National Socialist and Communist Propaganda Activities in the Turkish Press during the World War II
Authors: Asuman Tezcan Mirer
Abstract:
This proposed paper discusses nationalist socialist and communist propaganda struggles in the Turkish press during World War II. The paper aspires to analyze how government agencies directed and organized the Turkish press to prevent the "5th column" from influencing public opinion. During the Second World War, one of the most emphasized issues was propaganda and how Turkish citizens would be protected from the effects of disinformation. Istanbul became a significant headquarters for belligerent countries' intelligence services, and these services were involved in gathering intelligence and disseminating propaganda. The main motive of national socialist propaganda was "anti-communism" in Turkey. Subsidizing certain magazines, controlling German companies' advertisements and paper trade, spreading rumors, printing propaganda brochures, and showing German propaganda films are some tactics that the nationalist socialists applied before and during the Second World War. On the other hand, the communists targeted Turkish racist/ultra-nationalist groups and their publications, which were influenced by the Nazi regime. They were also involved in distributing Marxist publications, printing brochures, and broadcasting radio programs. This study composes of three parts. The first part describes the nationalist socialist and communist propaganda activities in Turkey during the Second World War. The second part addresses the debates over propaganda among selected newspapers representing different ideologies. Finally, the last part analyzes the Turkish government's press policy. It explains why the government allowed ideological debates in the press despite its authoritarian press policy and "active neutrality" stance in the international arena.Keywords: propaganda, press, 5th column, World War II, Turkey
Procedia PDF Downloads 101407 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.
Authors: O. Smara, H. Dendougui, B. Legseir
Abstract:
Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols
Procedia PDF Downloads 304406 Society and Cinema in Iran
Authors: Seyedeh Rozhano Azimi Hashemi
Abstract:
There is no doubt that ‘Art’ is a social phenomena and cinema is the most social kind of art. Hence, it’s clear that we can analyze the relation’s of cinema and art from different aspects. In this paper sociological cinema will be investigated which, is a subdivision of sociological art. This term will be discussed by two main approaches. One of these approaches is focused on the effects of cinema on the society, which is known as “Effects Theory” and the second one, which is dealing with the reflection of social issues in cinema is called ” Reflection Theory”. "Reflect theory" approach, unlike "Effects theory" is considering movies as documents, in which social life is reflected, and by analyzing them, the changes and tendencies of a society are understood. Criticizing these approaches to cinema and society doesn’t mean that they are not real. Conversely, it proves the fact that for better understanding of cinema and society’s relation, more complicated models are required, which should consider two aspects. First, they should be bilinear and they should provide a dynamic and active relation between cinema and society, as for the current concept social life and cinema have bi-linear effects on each other, and that’s how they fit in a dialectic and dynamic process. Second, it should pay attention to the role of inductor elements such as small social institutions, marketing, advertisements, cultural pattern, art’s genres and popular cinema in society. In the current study, image of middle class in cinema of Iran and changing the role of women in cinema and society which were two bold issue that cinema and society faced since 1979 revolution till 80s are analyzed. Films as an artwork on one hand, are reflections of social changes and with their effects on the society on the other hand, are trying to speed up the trends of these changes. Cinema by the illustration of changes in ideologies and approaches in exaggerated ways and through it’s normalizing functions, is preparing the audiences and public opinions for the acceptance of these changes. Consequently, audience takes effect from this process, which is a bi-linear and interactive process.Keywords: Iranian Cinema, Cinema and Society, Middle Class, Woman’s Role
Procedia PDF Downloads 340405 Nano-Coating for Corrosion Prevention
Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani
Abstract:
Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating
Procedia PDF Downloads 470404 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 77403 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature
Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa
Abstract:
In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state
Procedia PDF Downloads 248402 Production of Cellulose Nanowhiskers from Red Algae Waste and Its Application in Polymer Composite Development
Authors: Z. Kassab, A. Aboulkas, A. Barakat, M. El Achaby
Abstract:
The red algae are available enormously around the world and their exploitation for the production of agar product has become as an important industry in recent years. However, this industrial processing of red algae generated a large quantity of solid fibrous wastes, which constitute a source of a serious environmental problem. For this reason, the exploitation of this solid waste would help to i) produce new value-added materials and ii) to improve waste disposal from environment. In fact, this solid waste can be fully utilized for the production of cellulose microfibers and nanocrystals because it consists of large amount of cellulose component. For this purpose, the red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments with controlled conditions, in order to obtain pure cellulose microfibers and cellulose nanocrystals. The raw product and the as-extracted cellulosic materials were successively characterized using serval analysis techniques, including elemental analysis, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and transmission electron microscopy. As an application, the as extracted cellulose nanocrystals were used as nanofillers for the production of polymer-based composite films with improved thermal and tensile properties. In these composite materials, the adhesion properties and the large number of functional groups that are presented in the CNC’s surface and the macromolecular chains of the polymer matrix are exploited to improve the interfacial interactions between the both phases, improving the final properties. Consequently, the high performances of these composite materials can be expected to have potential in packaging material applications.Keywords: cellulose nanowhiskers, food packaging, polymer composites, red algae waste
Procedia PDF Downloads 228401 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan
Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed
Abstract:
The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.Keywords: ERT, magnetic, mineralization, Red Sea, Sudan
Procedia PDF Downloads 429400 Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity
Authors: Riya Thomas, Denis Music, Tautgirdas Ruzgas
Abstract:
The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science.Keywords: density functional theory, electrochemical sensor, Ti-O film, tyrosinase
Procedia PDF Downloads 22399 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness
Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad
Abstract:
Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss
Procedia PDF Downloads 52398 Double Beta Decay Experiments in Novi Sad
Authors: Nataša Todorović, Jovana Nikolov
Abstract:
Despite the great interest in β⁻β⁻ decay, β⁺β⁺ decays are rarely investigated due to the low probability of detecting these processes with available low-level equipment. If β⁺β⁺, β⁺EC, or ECEC decay occurs in a thin sample of a material, the positrons will be stopped and annihilated inside the material, leading to the emission of two or four coincidence gamma photons energy of 511 keV. The paper presents the results of measurements of double beta decay of ⁶⁴Zn, ⁵⁰Cr, and ⁵⁴Fe isotopes. In the first experiment, 511-keV gamma rays originating from the annihilation of positrons in natural zinc were measured by a coincidence technique to obtain a non-zero value for the (0ν+2ν) half-life. In the second experiment, the result of measuring double beta decay of ⁵⁰Cr is presented, which suggests a result other than zero at 95% CL and gives the lowest limit for the half-life of this process. In the third experiment, neutrino-less ECEC decay of ⁵⁴Fe was examined. Under the decay theory, gamma rays are emitted whose energy does not coincide with the energies of gamma rays emitted by nuclei from known discrete excited states. Iron shield of an internal volume of 1 m³ and thickness of 25 cm served as a source for measuring the (0ν+2ν) process in ⁵⁴Fe, whose yield in natural iron is 5.4%. We obtain the lower limit for the half-life for ⁵⁴Fe: T(0ν, K, K)>4.4x10²⁰ yr, T(0ν, K, L)>4.1x10²⁰ yr, and T(0ν, L, L)>5.0x10²⁰ yr. For ⁵⁰Cr limit for the half-life is T(0ν+2ν)>1.3(6)x10¹⁸ yr, and for ⁶⁴Zn T(0ν+2ν, ECβ+)=1.1(0.9)x10⁹ years.Keywords: neutrinoless double beta decay, half-life, ⁶⁴Zn, ⁵⁰Cr, and, ⁵⁴Fe
Procedia PDF Downloads 108397 Effect of Tensile Strain on Microstructure of Irradiated Core Internal Material
Authors: Hygreeva Kiran Namburi, Anna Hojna, Edita Lecianova, Fencl Zdenek
Abstract:
Irradiation Assisted Stress Corrosion Cracking [IASCC] is one of the most significant environmental degradation in the internal components made from Austenitic stainless steel. This mechanism is still not fully understood and there are no suitable criteria for prediction of the damage during operation. In this work, core basket material 08Ch18N10T austenitic stainless steel acquired from decommissioned NPP Nord / Greifswald Unit 1, VVER 440-230 type, operated for 15 years and irradiated at 5.2 dpa is studied. This material was tensile tested at two different test temperatures and strain rates in air and at the elevated temperature under the water environment. SEM observations of the fracture surface documented ductile fracture of the samples tested in air, but areas of IASCC tested in water. This paper emphasizes on the microscopic examination results from the mechanically tested samples to determine the underlying IASCC physical damage process. TEM observations of thin foils made from the gauge sections that are closer to the fractured surface of the specimen aimed to find variances in interaction of dislocations and grain boundaries owing to different test conditions.Keywords: irradiation assisted stress corrosion cracking, core basket material, SEM observations of the fracture surface, microscopic examination results
Procedia PDF Downloads 349396 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.Keywords: antimalarial medicines, counterfeit, substandard, TLC
Procedia PDF Downloads 320395 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope
Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov
Abstract:
Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions
Procedia PDF Downloads 322394 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances
Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann
Abstract:
The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems
Procedia PDF Downloads 74393 Ethnopharmacological Analysis of Fermented Herbal Concoctions
Authors: Ishmael Ntlhamu
Abstract:
In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo.Keywords: antimicrobials, concoctions, cytotoxicity, phytochemicals
Procedia PDF Downloads 138392 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers
Authors: Venkat Garigapati
Abstract:
Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin
Procedia PDF Downloads 90391 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)
Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann
Abstract:
The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems
Procedia PDF Downloads 96390 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations
Authors: A. Hameed, N. Upreti, P. Srivastava
Abstract:
Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary
Procedia PDF Downloads 162389 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions
Authors: Tsukasa Ogawa, Mitsuhiro Okayasu
Abstract:
To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions
Procedia PDF Downloads 168388 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation
Authors: A. Naamane, M. Hasnaoui
Abstract:
Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel
Procedia PDF Downloads 134387 Macular Ganglion Cell Inner Plexiform Layer Thinning
Authors: Hye-Young Shin, Chan Kee Park
Abstract:
Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography
Procedia PDF Downloads 337386 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells
Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis
Abstract:
This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening
Procedia PDF Downloads 72385 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre
Authors: Mohammed Mashrei
Abstract:
Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.Keywords: ferrocement, fibre, silica fume, slab, strength
Procedia PDF Downloads 235384 Modeling and Behavior of Structural Walls
Authors: Salima Djehaichia, Rachid Lassoued
Abstract:
Reinforced concrete structural walls are very efficient elements for protecting buildings against excessive early damage and against collapse under earthquake actions. It is therefore of interest to develop a numerical model which simulates the typical behavior of these units, this paper presents and describes different modeling techniques that have been used by researchers and their advantages and limitations mentioned. The earthquake of Boumerdes in 2003 has demonstrated the fragility of structures and total neglect of sismique design rules in the realization of old buildings. Significant damage and destruction of buildings caused by this earthquake are not due to the choice of type of material, but the design and the study does not congruent with seismic code requirements and bad quality of materials. For idealizing the failure of rules, a parametric study focuses on: low rate of reinforcements, type of reinforcement, resistance moderate of concrete. As an application the modeling strategy based on finite elements combined with a discretization of wall more solicited by successive thin layers. The estimated performance level achieved during a seismic action is obtained from capacity curves under incrementally increasing loads. Using a pushover analysis, a characteristic non linear force-displacement relationship can be determined. The results of numeric model are confronted with those of Algerian Para seismic Rules (RPA) in force have allowed the determination of profits in terms of displacement, shearing action, ductility.Keywords: modeling, old building, pushover analysis, structural walls
Procedia PDF Downloads 246383 Ti-Mo-N Nano-Grains Embedded into Thin MoSₓ-Based Amorphous Matrix: A Novel Structure for Superhardness and Ultra-Low Wear
Authors: Lina Yang, Mao Wen, Jianhong Chen, Kan Zhang
Abstract:
Molybdenum disulfide (MoS₂) represents a highly sought lubricant for reducing friction based on intrinsic layered structure, but for this reason, practical applications have been greatly restricted due to the fact that its low hardness would cause severe wear. Here, a novel TiMoN/MoSₓ composite coatings with TiMoN solid solution grains embedded into MoSₓ-based amorphous matrix has been successfully designed and synthesized, through magnetron co-sputtering technology. Desirably, in virtue of such special microstructure, superhardness and excellent toughness can be well achieved, along with an ultra-low wear rate at ~2×10⁻¹¹ mm³/Nm in the air environment, simultaneously, low friction at ~0.1 is maintained. It should be noted that this wear level is almost two orders of magnitude lower than that of pure TiN coating, and is, as we know, the lowest wear rate in dry sliding. Investigations of tribofilm reveal that it is amorphous MoS₂ in nature, and its formation arises directly from the MoSₓ amorphous matrix. Which contributes to effective lubrication behavior, coupled with excellent mechanical performances of such composite coating, exceptionally low wear can be guaranteed. The findings in this work suggest that the special composite structure makes it possible for the synthesis of super-hard and super-durable lubricative coating, offering guidance to synthesize ultrahigh performance protective coating for industrial application.Keywords: hardness, MoS₂-containing composite coatings, toughness, tribological properties
Procedia PDF Downloads 152382 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures
Authors: Mahyar Maali, Merve Sagiroglu
Abstract:
Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.Keywords: cold-formed steel, screwed connection, connection, screw length
Procedia PDF Downloads 177381 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding
Authors: Ahmed Raza Khan
Abstract:
Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence
Procedia PDF Downloads 107380 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba
Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo
Abstract:
Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba
Procedia PDF Downloads 444379 Epicardial Fat Necrosis in a Young Female: A Case Report
Authors: Tayyibah Shah Alam, Joe Thomas, Nayantara Shenoy
Abstract:
Presenting a case that we would like to share, the answer is straight forward but the path taken to get to the diagnosis is where it gets interesting. A 31-year-old lady presented to the Rheumatology Outpatient department with left-sided chest pain associated with left-sided elbow joint pain intensifying over the last 2 days. She had been having a prolonged history of chest pain with minimal intensity since 2016. The pain is intermittent in nature. Aggravated while exerting, lifting heavy weights and lying down. Relieved while sitting. Her physical examination and laboratory tests were within normal limits. An electrocardiogram (ECG) showed normal sinus rhythm and a chest X-ray with no significant abnormality was noted. The primary suspicion was recurrent costochondritis. Cardiac blood inflammatory markers and Echo were normal, ruling out ACS. CT chest and MRI Thorax contrast showed small ill-defined STIR hyperintensity with thin peripheral enhancement in the anterior mediastinum in the left side posterior to the 5th costal cartilage and anterior to the pericardium suggestive of changes in the fat-focal panniculitis. Confirming the diagnosis as Epicardial fat necrosis. She was started on Colchicine and Nonsteroidal anti-inflammatory drugs for 2-3 weeks, following which a repeat CT showed resolution of the lesion and improvement in her. It is often under-recognized or misdiagnosed. CT scan was collectively used to establish the diagnosis. Making the correct diagnosis prospectively alleviates unnecessary testing in favor of conservative management.Keywords: EFN, panniculitis, unknown etiology, recurrent chest pain
Procedia PDF Downloads 97