Search results for: shear strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2727

Search results for: shear strain

1467 Comparison for Some Elastic and Mechanical Properties of Plutonium Dioxide

Authors: M. Guler, E. Guler

Abstract:

We report some elastic parameters of cubic fluorite type neptunium dioxide (NpO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other relevant elastic parameters were also calculated during research. After calculations, we have compared our results with the available theoretical data. Our results agree well with the previous theoretical findings of the considered quantities of NpO2.

Keywords: NpO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 334
1466 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates

Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady

Abstract:

The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.

Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus

Procedia PDF Downloads 163
1465 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures

Authors: Irfan Anjum Manarvi, Fawzi Aljassir

Abstract:

Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.

Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis

Procedia PDF Downloads 326
1464 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 129
1463 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects

Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov

Abstract:

The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.

Keywords: effective properties, scale effects, surface defects, voids elasticity

Procedia PDF Downloads 413
1462 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam

Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir

Abstract:

Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.

Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory

Procedia PDF Downloads 316
1461 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 78
1460 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 431
1459 A Superposition Method in Analyses of Clamped Thick Plates

Authors: Alexander Matrosov, Guriy Shirunov

Abstract:

A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.

Keywords: general solution, method of initial functions, superposition method, thick isotropic plates

Procedia PDF Downloads 594
1458 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 220
1457 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: reinforced-concrete buildings, construction mistakes, base-shear, displacements, failure

Procedia PDF Downloads 265
1456 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 358
1455 Investigation of Mutagenicity and DNA Binding Properties of Metal-Free and Metallophthalocyanines Containing α-Napththolbenzein Groups on the Peripheral Positions

Authors: Meltem Betül Sağlam, Halil İbrahim Güler, Aykut Sağlam

Abstract:

In this work, phthalocyanine compounds containing α-naphtholbenzeinunits have been synthesized. Mutagenicity and DNA binding properties of the compounds were investigated by Salmonella/Microsome Assay and spectrophotometer. According to the results of the preliminary range finding tests, the compounds gave no toxic effect to all tester strain S. typhimurium TA98 and TA100 at doses of 500, 1100, 350, 500 and 750 µg/plate in the presence and absence of S9, respectively. This study showed that all compounds exhibited efficient DNA-binding activity. In conclusion, these non-toxic compounds may be used as effective DNA dyes for molecular biology studies.

Keywords: dye, mutagenicity, phthalocyanine, toxicity

Procedia PDF Downloads 228
1454 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System

Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka

Abstract:

The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.

Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting

Procedia PDF Downloads 177
1453 A Benchmark for Some Elastic and Mechanical Properties of Uranium Dioxide

Authors: E. Güler, M. Güler

Abstract:

We present some elastic parameters of cubic fluorite type uranium dioxide (UO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic parameters were calculated during research. After calculations, we compared our results not only with the available theoretical data but also with previous experimental results. Our results are consistent with experiments and compare well the former theoretical results of the considered parameters of UO2.

Keywords: UO2, elastic constants, bulk modulus, mechanical properties

Procedia PDF Downloads 407
1452 A Comparison for Some Elastic and Mechanical Properties of Neptunium Dioxide

Authors: E. Güler, M. Güler

Abstract:

We report some elastic quantities of cubic fluorite type plutonium dioxide (PuO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic quantities were calculated during present research. After present calculations, we have compared our results with the existing theoretical data of literature. Our results are consistent with previous theoretical findings of the considered parameters of PuO2.

Keywords: PuO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 307
1451 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 326
1450 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 160
1449 Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch

Authors: Manish Kumar Thakur, Chiranjit Sarkar

Abstract:

Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch.

Keywords: clutch, magnetorheological fluid, sedimentation, torque

Procedia PDF Downloads 182
1448 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 373
1447 Expression of Human Papillomavirus Type 18 L1 Virus-Like Particles in Methylotropic Yeast, Pichia Pastoris

Authors: Hossein Rassi, Marjan Moradi Fard, Samaneh Niko

Abstract:

Human papillomavirus type 16 and 18 are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, HPV type 18 accounts for about 34 % of all HPV infections in Iran and the most promising vaccine against HPV infection is based on the L1 major capsid protein. The L1 protein of HPV18 has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are non-infectious, highly immunogenic and allowing their use in vaccine production. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system used to produce high levels of heterologous proteins. In this study we expressed HPV18 L1 VLPs in P. pastoris. The gene encoding the major capsid protein L1 of the high-risk HPV type 18 was isolated from Iranian patient by PCR and inserted into pTG19-T vector to obtain the recombinant expression vector pTG19-HPV18-L1. Then, the pTG19-HPV18-L1 was transformed into E. coli strain DH5α and the recombinant protein HPV18 L1 was expressed under IPTG induction in soluble form. The HPV18 L1 gene was excised from recombinant plasmid with XhoI and EcoRI enzymes and ligated into the yeast expression vector pPICZα linearized with the same enzymes, and transformed into P. pastoris. Induction and expression of HPV18 L1 protein was demonstrated by BMGY/BMMY and RT PCR. The parameters for induced cultivation for strain in P. pastoris KM71 with HPV16L1 were investigated in shaking flask cultures. After induced cultivation BMMY (pH 7.0) medium supplemented with methanol to a final concentration of 1.0% every 24 h at 37 degrees C for 96 h, the recombinant produced 78.6 mg/L of L1 protein. This work offers the possibility for the production of prophylactic vaccine for cervical carcinoma by P. pastoris for HPV-18 L1 gene. The VLP-based HPV vaccines can prevent persistent HPV18 infections and cervical cancer in Iran. The HPV-18 L1 gene was expressed successfully in E.coli, which provides necessary basis for preparing HPV-18 L1 vaccine in human. Also, HPV type 6 L1 proteins expressed in Pichia pastoris will facilitate the HPV vaccine development and structure-function study.

Keywords: Pichia pastoris, L1 virus-like particles, human papillomavirus type 18, biotechnology

Procedia PDF Downloads 403
1446 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: boron, doping, internal friction, si-ge alloys, thermal treatment

Procedia PDF Downloads 454
1445 Effect of High-Pressure and Thermal Treatments on Quality Markers of Strawberry Nectars

Authors: Karen Louise Lacey, Dario Javier Pavon Vargas, Massimiliano Rinaldi, Luca Cattani, Sara Rainieri

Abstract:

The effects of high-pressure processing (HPP) and thermal treatments (TT) on quality markers of strawberry nectar (12 °Brix, 3,3 pH) was studied before and after treatments. TT and HPP treatments ensured a 3-log aerobic bacteria inactivation. No significant difference was detected in terms of pH and °Brix. TT samples were less red (a* less positive) than all HPP treated samples, while all samples were less red than the control. Apparent viscosity was significantly increased in all the HPP treatments, at 10 1/s shear rate, control was 79.04±7.94 mPa•s and the 600 MPa-20 min treatment were 327.10±1.64 mPa•s. This work suggests that HPP treatments may maintain the quality markers of strawberry nectar better.

Keywords: HPP, strawberry nectar, colour , viscosity

Procedia PDF Downloads 127
1444 Moisturising Prepared Lip Balm Behavior in Dynamic States

Authors: Fatiha Boudjema, Samia Boudergua, Abdallah Elhirtsi Nour El Houda, Ahmed Mbarek Kaouther

Abstract:

The main objective of our work is to prepare and characterize a moisturizing lip balm based on natural ingredients such as waxes, vegetable oils, and shea butter. First, the vegetable and essential oils were extracted, and then lip balm was prepared. The extracted oils and the lip balm were submitted to many tests in order to guarantee their quality and effectiveness. These tests show that our balm has a shear thinning behavior with a melting point of 58 °C and that it spreads easily on the skin without showing an allergic reaction. The balm showed a moisturising effect and stability over the two-month period at storage room temperature condition.

Keywords: lip balm, natural products, rheological study, antioxydant activity

Procedia PDF Downloads 101
1443 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis

Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe

Abstract:

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.

Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids

Procedia PDF Downloads 65
1442 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 113
1441 Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN

Authors: Muhammad Naveed, Sohail Yousaf, Zahir Ahmad Zahir, Birgit Mitter, Angela Sessitsch

Abstract:

Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions.

Keywords: crop genotype, inoculum density, Burkholderia phytofirmans PsJN, colonization, growth, potato

Procedia PDF Downloads 484
1440 Effect of Farsi gum (Amygdalus Scoparia Spach) in Combination with Sodium Caseinate on Textural, Stability, Sensory Characteristics and Rheological Properties of Whipped Cream

Authors: Samaneh Mashayekhi

Abstract:

Cream (whipped cream) is one of the dairy products that can be used in desserts, pastries, cakes, and ice creams. In this product, some parameters such as taste and flavor, quality stability, whipping ability, and stability of foam after whipping are very important. The objective of this study is applicable of Farsi gum and sodium caseinate in 3 biopolymer ratios (1:1, 1:2, and 2:1) and 0.15, 0.30, and 0.45 %wt. concentrations in whipped cream formulation. Sample without hydrocolloids was considered as a control. Before whipping, viscosity of all creams was increased continuously with increasing shear rate. In addition, the viscosity was increased with the increasing hydrocolloids addition (in constant shear rate). Microscopic observations showed that polydispersity of systems before whipping. Overrun of F, FC11, and FC21 samples were increased (with increasing total hydrocollid concentration 0.15 to 0.30 % wt.); then decreased this parameter with increasing to 0.45 % wt. concentration. However, mean comparison of FC12 samples overrun showed that this value was increased with increasing total hydrocolloids concentration. 0.45FC21 sample had significantly (P<0.05) highest overrun (118.44±9.11). Synersis of whipped cream samples are reduced with hydrocolloid addition. B sample had significantly (P<0.05) highest serum separation (16.66±0.80%), and 0.45FC12 had a low one (5.94±0.19%) in compered with others synersis. Mean comparison of hardness and adhesiveness of whipped cream revealed that Farsi gum addition alone and in combination with sodium caseinate increased the previous textural characteristics. Results exhibited that 0.4FG12 had significantly (P<0.05) highest hardness (267.00±18.38 g).Mean comparison of droplet size of cream sample before whipping displaced that hydrocolloid addition had no significant effect (P>0.05), and mean droplet size of the samples ranged between 1.93-2.16 µm. Generally, the mean droplet size of whipped cream increased after whipping with increasing hydrocolloid concentration (0.15-0.45 % wt.). Color parameter analysis showed that Farsi gum addition alone and in combination with sodium caseinate had no significant effect (P>0.05) on these parameters (Lightness, Redness, and Yellowness). Based on sensory evaluation results, appearance, color, flavor, and taste of whipped creams not influenced by hydrocolloids addition; but 0.45FC12 sample had higher value. Based on the above results, Farsi gum had suggested to potential application in a whipped cream formulation; however, further research need to foundingof their functionality.

Keywords: whipped cream, farsi gum, sodium caseinate, overrun, droplet size, texture analysis, sensory evaluation

Procedia PDF Downloads 95
1439 Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture

Authors: Johanna Perdomo, Riki Lamont, Edmund Pickering, Naomi C. Paxton, Maria A. Woodruff

Abstract:

Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture.

Keywords: soft robot, tissue engineering, mechanical stimulation, dynamic cell culture, bioreactor

Procedia PDF Downloads 94
1438 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 172