Search results for: production data
29557 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production
Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra
Abstract:
The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.Keywords: choak, rice beer waste, laying hen, production performance, cost economics
Procedia PDF Downloads 5629556 Climate Change Impacts on Oyster Aquaculture - Part I: Identification of Key Factors
Authors: Emmanuel Okine Neokye, Xiuquan Wang, Krishna K. Thakur, Pedro Quijon, Rana Ali Nawaz, , Sana Basheer
Abstract:
Oysters are enriched with high-quality protein and are widely known for their exquisite taste. The production of oysters plays an important role in the local economies of coastal communities in many countries, including Atlantic Canada, because of their high economic value. However, because of the changing climatic conditions in recent years, oyster aquaculture faces potentially negative impacts, such as increasing water acidification, rising water temperatures, high salinity, invasive species, algal blooms, and other environmental factors. Although a few isolated effects of climate change on oyster aquaculture have been reported in recent years, it is not well understood how climate change will affect oyster aquaculture from a systematic perspective. In the first part of this study, we present a systematic review of the impacts of climate change and some key environmental factors affecting oyster production on a global scale. The study also identifies knowledge gaps and challenges. In addition, we present key research directions that will facilitate future investigations.Keywords: climate change, oyster production, oyster aquaculture, greenhouse gases
Procedia PDF Downloads 1129555 Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria
Authors: W. Riahi, M. L. Mansour
Abstract:
Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors.Keywords: GIS, satellite image, agriculture, NDVI, thematic map
Procedia PDF Downloads 42229554 Preparation of Frozen Bivalent Babesial (Babesia Bovis and Babesia Bigemina) Vaccine from Field Isolates and Evaluation of Its Efficacy in Calves
Authors: Muhammad Fiaz Qamar, Ahmad Faraz, Muhammad Arfan Zaman, Kazim Ali, Waleed Akram
Abstract:
Babesiosis is reflected as the most important disease of cattle that are transmitted by arthropods. In Pakistan, its prevalence is up to 29% in the cattle and buffalo population in different regions. Cattle show a long lasting and durable immunity by giving an infection of B.bovis, B. bigemina, or Babesiadivergens. this is used in cattle to immunize them in a few countries as anti-babesiosis vaccine. Development of frozen vaccine allows for complete testing after production of each batch, However, once thawed, its reduced its shelf life, frozen vaccines are more difficult to transport as well as expensive to produce as compared to chilled vaccine. The contamination of blood derived vaccine has the potential risk that makes pre-production and post-production quality control necessary. For the trail master seed production of whole blood frozen bivalent Babesia(Babesiabovis and Babesiabigemina), 100 blood samples of Babesial positive suspected cattle was taken and processed for separation microscopic detection and rectification by PCR. Vaccine passages were done to reduce the parasitaemiasis in live calves. After 8 passages, parasitemia of Babesia reduced from 80% to 15%. Infected donor calf’s blood was taken by jugular cannulation by using preservative free lithium heparin as an anticoagulant (5 International Units IU heparin/ml blood). In lab, parasite containing blood was mixed in equal volumes with 3 M glycerol in PBS supplemented with 5 mM glucose (final concentration of glycerol 1.5 M) at 37°C. The mixture was then equilibrized at 37°C for 30 minutes and were dispensed in required containers (e.g., 5 ml cryovials).Keywords: distribution, babesia, primer sequences, PCV
Procedia PDF Downloads 10229553 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems
Authors: Georgi Y. Georgiev, Matthew Brouillet
Abstract:
This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.Keywords: complexity, self-organization, agent based modelling, efficiency
Procedia PDF Downloads 6729552 Application of Costing System in the Small and Medium Sized Enterprises (SME) in Turkey
Authors: Hamide Özyürek, Metin Yılmaz
Abstract:
Standard processes, similar and limited production lines, the production of high direct costs will be more accurate than the use of parts of the traditional cost systems in the literature. However, direct costs, overhead expenses, in turn, decreases the burden of increasingly sophisticated production facilities, a situation that led the researchers to look for the cost of traditional systems of alternative techniques. Variety cost management approaches for example Total quality management (TQM), just-in-time (JIT), benchmarking, kaizen costing, targeting cost, life cycle costs (LLC), activity-based costing (ABC) value engineering have been introduced. Management and cost applications have changed over the past decade and will continue to change. Modern cost systems can provide relevant and accurate cost information. These methods provide the decisions about customer, product and process improvement. The aim of study is to describe and explain the adoption and application of costing systems in SME. This purpose reports on a survey conducted during 2014 small and medium sized enterprises (SME) in Ankara. The survey results were evaluated using SPSS package program.Keywords: modern costing systems, managerial accounting, cost accounting, costing
Procedia PDF Downloads 56529551 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects
Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town
Abstract:
The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry
Procedia PDF Downloads 9029550 Presence and Severity of Language Deficits in Comprehension, Production and Pragmatics in a Group of ALS Patients: Analysis with Demographic and Neuropsychological Data
Authors: M. Testa, L. Peotta, S. Giusiano, B. Lazzolino, U. Manera, A. Canosa, M. Grassano, F. Palumbo, A. Bombaci, S. Cabras, F. Di Pede, L. Solero, E. Matteoni, C. Moglia, A. Calvo, A. Chio
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease of adulthood, which primarily affects the central nervous system and is characterized by progressive bilateral degeneration of motor neurons. The degeneration processes in ALS extend far beyond the neurons of the motor system, and affects cognition, behaviour and language. To outline the prevalence of language deficits in an ALS cohort and explore their profile along with demographic and neuropsychological data. A full neuropsychological battery and language assessment was administered to 56 ALS patients. Neuropsychological assessment included tests of executive functioning, verbal fluency, social cognition and memory. Language was assessed using tests for verbal comprehension, production and pragmatics. Patients were cognitively classified following the Revised Consensus Criteria and divided in three groups showing different levels of language deficits: group 1 - no language deficit; group 2 - one language deficit; group 3 - two or more language deficits. Chi-square for independence and non-parametric measures to compare groups were applied. Nearly half of ALS-CN patients (48%) reported one language test under the clinical cut-off, and only 13% of patents classified as ALS-CI showed no language deficits, while the rest 87% of ALS-CI reported two or more language deficits. ALS-BI and ALS-CBI cases all reported two or more language deficits. Deficits in production and in comprehension appeared more frequent in ALS-CI patients (p=0.011, p=0.003 respectively), with a higher percentage of comprehension deficits (83%). Nearly all ALS-CI reported at least one deficit in pragmatic abilities (96%) and all ALS-BI and ALS-CBI patients showed pragmatic deficits. Males showed higher percentage of pragmatic deficits (97%, p=0.007). No significant differences in language deficits have been found between bulbar and spinal onset. Months from onset and level of impairment at testing (ALS-FRS total score) were not significantly different between levels and type of language impairment. Age and education were significantly higher for cases showing no deficits in comprehension and pragmatics and in the group showing no language deficits. Comparing performances at neuropsychological tests among the three levels of language deficits, no significant differences in neuropsychological performances were found between group 1 and 2; compared to group 1, group 3 appeared to decay specifically on executive testing, verbal/visuospatial learning, and social cognition. Compared to group 2, group 3 showed worse performances specifically in tests of working memory and attention. Language deficits have found to be spread in our sample, encompassing verbal comprehension, production and pragmatics. Our study reveals that also cognitive intact patients (ALS-CN) showed at least one language deficit in 48% of cases. Pragmatic domain is the most compromised (84% of the total sample), present in nearly all ALS-CI (96%), likely due to the influence of executive impairment. Lower age and higher education seem to preserve comprehension, pragmatics and presence of language deficits. Finally, executive functions, verbal/visuospatial learning and social cognition differentiate the group with no language deficits from the group with a clinical language impairment (group 3), while attention and working memory differentiate the group with one language deficit from the clinical impaired group.Keywords: amyotrophic lateral sclerosis, language assessment, neuropsychological assessment, language deficit
Procedia PDF Downloads 16129549 A Review Paper on Data Mining and Genetic Algorithm
Authors: Sikander Singh Cheema, Jasmeen Kaur
Abstract:
In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining
Procedia PDF Downloads 58929548 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 5129547 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring
Authors: Seung-Lock Seo
Abstract:
This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.Keywords: data mining, process data, monitoring, safety, industrial processes
Procedia PDF Downloads 39529546 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils
Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen
Abstract:
The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.Keywords: biological nitrogen fixation, inoculation, rhizobium, soybean
Procedia PDF Downloads 17129545 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance
Authors: H. Shahid
Abstract:
Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.Keywords: hydrogen, oxygen, thermolysis, ultraviolet
Procedia PDF Downloads 13129544 Impact of Foreign Migration on Innovation in Thailand
Authors: Siriwan Saksiriruthai
Abstract:
This paper reviews and analyzes impact of foreign migration on innovation for Thailand. With the analysis of decades of industrial and economic development, Thailand has attracted investment by providing cheap labor and low cost of production. Foreign migrant substantially contribute to the development by supplying lower wages with low-skilled workers. However, it is revealed that foreign low-skilled labor influx has a negative effect on innovation. Firms concentrate on benefits from low cost of production and are not motivated to invest for innovation. Therefore, with the emerging of new economies where lower wage laborers are offered, Thailand has to promote innovation to maintain economic development sustainability.Keywords: migration, innovation, Thailand, foreign
Procedia PDF Downloads 37629543 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 1629542 High Acid-Stable α-Amylase Production by Milk in Liquid Culture
Authors: Shohei Matsuo, Saki Mikai, Hiroshi Morita
Abstract:
Objectives: Shochu is a popular Japanese distilled spirits. In the production of shochu, the filamentous fungus Aspergillus kawachii has traditionally been used. A. kawachii produces two types of starch hydrolytic enzymes, α-amylase (enzymatic liquefaction) and glucoamylase (enzymatic saccharification). Liquid culture system is a relatively easy microorganism to ferment with relatively low cost of production compared for solid culture. In liquid culture system, acid-unstable α-amylase (α-A) was produced abundantly, but, acid-stable α-amylase (Aα-A) was not produced. Since there is high enzyme productivity, most in shochu brewing have been adopted by a solid culture method. In this study, therefore, we investigated production of Aα-A in liquid culture system. Materials and methods: Microorganism Aspergillus kawachii NBRC 4308 was used. The mold was cultured at 30 °C for 7~14 d to allow formation of conidiospores on slant agar medium. Liquid Culture System: A. kawachii was cultured in a 100 ml of following altered SLS medium: 1.0 g of rice flour, 0.1 g of K2HPO4, 0.1 g of KCl, 0.6 g of tryptone, 0.05 g of MgSO4・7H2O, 0.001 g of FeSO4・7H2O, 0.0003 g of ZnSO4・7H2O, 0.021 g of CaCl2, 0.33 of citric acid (pH 3.0). The pH of the medium was adjusted to the designated value with 10 % HCl solution. The cultivation was shaking at 30 °C and 200 rpm for 72 h. It was filtered to obtain a crude enzyme solution. Aα-A assay: The crude enzyme solution was analyzed. An acid-stable α-amylase activity was carried out using an α-amylase assay kit (Kikkoman Corporation, Noda, Japan). It was conducted after adding 9 ml of 100 mM acetate buffer (pH 3.0) to 1 ml of the culture product supernatant and acid treatment at 37°C for 1 h. One unit of a-amylase activity was defined as the amount of enzyme that yielded 1 mmol of 2-chloro-4-nitrophenyl 6-azide-6-deoxy-b-maltopentaoside (CNP) per minute. Results and Conclusion: We experimented with co-culture of A. kawachii and lactobacillus in order to get control of pH in altered SLS medium. However, high production of acid-stable α-amylase was not obtained. We experimented with yoghurt or milk made an addition to liquid culture. The result indicated that high production of acid-stable α-amylase (964 U/g-substrate) was obtained when milk made an addition to liquid culture. Phosphate concentration in the liquid medium was a major cause of increased acid-stable α-amylase activity. In liquid culture, acid-stable α-amylase activity was enhanced by milk, but Fats and oils in the milk were oxidized. In addition, Tryptone is not approved as a food additive in Japan. Thus, alter SLS medium added to skim milk excepting for the fats and oils in the milk instead of tryptone. The result indicated that high production of acid-stable α-amylase was obtained with the same effect as milk.Keywords: acid-stable α-amylase, liquid culture, milk, shochu
Procedia PDF Downloads 28329541 An Assembly Line Designing Study for a Refrigeration Industry
Authors: Emin Gundogar, Burak Erkayman, Aysegul Yilmaz, Nusret Sazak
Abstract:
When considering current competition conditions on the world, satisfying customer demands on time has become an important factor that enables the firms take a step further. Therefore, production process must be completed faster to take the competitive advantage. A balanced assembly line is the one of most important factors affecting the speed of production lines. The aim of this study is to build an assembly line to balance the assembly line and to simulate it for different scenarios through a refrigerator factory. The times of the operations is analyzed and grouped by the priorities. First, a Kilbridge & Wester heuristics is put to the model then a simulation approach is implemented to the model and the differences are observed.Keywords: assembly line design, assembly line balancing, simulation modelling, refrigeration industry
Procedia PDF Downloads 44629540 An Introduction to E-Content Producing Algorithm for Screen-Recorded Videos
Authors: Jamileh Darsareh, Mohammad Nikafrooz
Abstract:
Some teachers and e-content producers, based on their experiences, try to produce educational videos using screen recording software. There are many challenges that they may encounter while producing screen-recorded videos. These are in the domains of technical and pedagogical challenges like designing the roadmap, preparing the screen, setting the recording software and recording the screen, editing, etc. This study is a descriptive study and tries to present some procedures for producing acceptable and well-made videos. These procedures are presented in the form of an algorithm for producing screen-recorded video. This algorithm presents the main producing phases, including design, pre-production, production, post-production, and distribution. These phases consist of some steps which are supported by several technical and pedagogical considerations. Following these phases and steps according to the suggested order helps the producers to produce their intended and desired video by saving time and also facing fewer technical problems. It is expected that by using this algorithm, e-content producers and teachers gain better performance in producing educational videos.Keywords: e-content producing algorithm, screen-recorded videos, screen recording software, technical and pedagogical considerations
Procedia PDF Downloads 19629539 Farming Production in Brazil: Innovation and Land-Sparing Effect
Authors: Isabela Romanha de Alcantara, Jose Eustaquio Ribeiro Vieira Filho, Jose Garcia Gasques
Abstract:
Innovation and technology can be determinant factors to ensure agricultural and sustainable growth, as well as productivity gains. Technical change has contributed considerably to supply agricultural expansion in Brazil. This agricultural growth could be achieved by incorporating more land or capital. If capital is the main source of agricultural growth, it is possible to increase production per unit of land. The objective of this paper is to estimate: 1) total factor productivity (TFP), which is measured in terms of the rate of output per unit of input; and 2) the land-saving effect (LSE) that is the amount of land required in the case that yield rate is constant over time. According to this study, from 1990 to 2019, it appears that 87 percent of Brazilian agriculture product growth comes from the gains of productivity; the rest of 13 percent comes from input growth. In the same period, the total LSE was roughly 400 Mha, which corresponds to 47 percent of the national territory. These effects reflect the greater efficiency of using productive factors, whose technical change has allowed an increase in agricultural production based on productivity gains.Keywords: agriculture, land-saving effect, livestock, productivity
Procedia PDF Downloads 22929538 Methods of Improving Production Processes Based on Deming Cycle
Authors: Daniel Tochwin
Abstract:
Continuous improvement is an essential part of effective process performance management. In order to achieve continuous quality improvement, each organization must use the appropriate selection of tools and techniques. The basic condition for success is a proper understanding of the business need faced by the company and the selection of appropriate methods to improve a given production process. The main aim of this article is to analyze the methods of conduct which are popular in practice when implementing process improvements and then to determine whether the tested methods include repetitive systematics of the approach, i.e., a similar sequence of the same or similar actions. Based on an extensive literature review, 4 methods of continuous improvement of production processes were selected: A3 report, Gemba Kaizen, PDCA cycle, and Deming cycle. The research shows that all frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re)interpretation" and the need to adapt the continuous improvement approach to the specific business process. The research shows that all the frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re) interpretation" and the need to adapt the continuous improvement approach to the specific business process.Keywords: continuous improvement, lean methods, process improvement, PDCA
Procedia PDF Downloads 7729537 Japanese Quail Breeding: The Second in Poultry Industry
Authors: A. Smaï, H. Idouhar-Saadi, S. Zenia, F. Haddadj, A. Aboun, S.Doumandji
Abstract:
The quail is the smallest member of the order fowl. His captive breeding has been practiced for centuries by the Japanese. Knowing that in the literature, it is mentioned that the end of lay is noted for the age of 6 months, our work has revealed a good egg production by females aged up to 35 weeks of age. In the same vein, our study focused on various parameters such as weight, diet and the number of eggs laid and this in order to better know the potential production and reproduction of domestic quail. Egg production has started from the 8th week of age of breeding, crop them and their counts are conducted daily basis until the age of 35 weeks. Indeed, biometric parameters are studied such as weight, length, and the largest diameter, the shape index, the index of shell, in order to analyze the physical condition of eggs by females of age. Until the age of 22 weeks, the eggs have maintained good biometric features. Japanese quail are best producing eggs. Hatchability is also considered. They are excellent poultry yields, since they begin laying eggs in two months and can provide abundant nesting with females over 8 months in our study. Other farms results reveal conclusions. Indeed, one aspect remains to be developed; it is the analysis of nutritional and therapeutic values of eggs over the age of females. The latter, given their wealth is a dietary supplement of animal origin with dietary value (it contains 0 cholesterol) that characterizes the quail eggs. Raising quail among other reproduction requires minimal when compared to other domestic birds space, this is the second breeding, in terms of importance after the chicken. Therefore, in the case of a farm that works exclusively in the production of eggs, requires minimal work and free space, as well as reduced costs.Keywords: Japanese quail, reproduction, eggs, biometrics, reproductive age
Procedia PDF Downloads 28229536 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 44729535 Economic Meltdown and Inflation and Its Effect on Organization Performance: A Study of Nigerian Manufacturing Companies
Authors: Cynthia Oluchi Akagha
Abstract:
This paper highlights the increase in production cost and the corresponding outcomes in Nigeria using six major manufacturing companies as a case study. During an inflationary period, the cost-of-living increases, which reduces the purchasing power of money. Inflation has become a severe issue in many countries recently. To examine how inflation affects the success of businesses in Nigeria, a quantitative approach and a focus on causality were utilized to examine six (6) functional Nigerian manufacturing enterprises. The correlation between business production cost, cost of items supplied, and gross profit from 2021-2022 was analyzed. The analysis recorded that the cost of production increased in 2022 compared to 2021. The expansion varied between the six companies by 77.1%. Only one company out of six reported a decrease in gross profit in 2022 compared to the previous year. The other five companies' profits increased between 6.5% and 87%. Companies like these have thrived despite the rising cost of living because they have adjusted by increasing their product pricing. Since this change has the most significant influence on consumers, the best long-term reaction for a corporation to inflationary effects is often an improvement in cost efficiency, output, or both.Keywords: economic meltdown, inflation, organization, performance
Procedia PDF Downloads 7929534 Data Mining in Healthcare for Predictive Analytics
Authors: Ruzanna Muradyan
Abstract:
Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health
Procedia PDF Downloads 5929533 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction
Authors: Melba D. Horton
Abstract:
Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule
Procedia PDF Downloads 18629532 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran
Authors: Sara Jelodarian
Abstract:
Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.Keywords: develop, production markets, progress, strategic role, technology
Procedia PDF Downloads 11729531 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 12829530 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression
Procedia PDF Downloads 39329529 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen
Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine
Abstract:
Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy
Procedia PDF Downloads 1729528 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 79