Search results for: human detection and identification
12207 Optimization of the Control Scheme for Human Extremity Exoskeleton
Authors: Yang Li, Xiaorong Guan, Cheng Xu
Abstract:
In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.Keywords: human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload
Procedia PDF Downloads 36212206 Isolement and Identification of Major Constituents from Essential Oil of Launaea nudicaulis
Authors: M. Yakoubi, N. Belboukhari, A. Cheriti, K. Sekoum
Abstract:
Launaea nudicaulis (L.) Hook.f. is a desert, spontaneous plant and endemic to northem Sahara, which belongs to the Asteraceae family. This species exists in the region of Bechar (Local name; El-Rghamma). In our knowledge, no work has been founded, except studies showing the antimicrobial and antifungal activity of methalonic extract of this plant. The present paper describes the chemical composition of the essential oil from Launaea nudicaulis and qualification of isolation and identification of some pure products by column chromatography. The essential oil from the aerial parts of Launaea nudicaulis (Asteraceae) was obtained by hydroditillation in 0.4% yield, led to isolation of four several new products. The isolation is made by column chromatography and followed by GC-IK and GC-MS analysis.Keywords: Launaea nudicaulis, asteraceae, essential oil, column chromatography, GC-FID, GC-MS
Procedia PDF Downloads 30112205 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting
Authors: Ifedapo Francis Awolowo
Abstract:
The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance
Procedia PDF Downloads 36612204 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 9312203 Identification and Selection of a Supply Chain Target Process for Re-Design
Authors: Jaime A. Palma-Mendoza
Abstract:
A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.Keywords: decision support systems, multiple criteria analysis, supply chain management
Procedia PDF Downloads 49212202 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools
Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha
Abstract:
The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase
Procedia PDF Downloads 14212201 Information Technologies in Human Resources Management - Selected Examples
Authors: A. Karasek
Abstract:
Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in a enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in Human Resource Management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: Recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.Keywords: e-HR, human resources management, HRM practices, HRMS, information technologies
Procedia PDF Downloads 35112200 Discovering the Real Psyche of Human Beings
Authors: Sheetla Prasad
Abstract:
The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.Keywords: face architecture, psyche, potential, face functional ratio, external rings
Procedia PDF Downloads 50512199 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery
Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder
Abstract:
The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands
Procedia PDF Downloads 38812198 Human Kinetics Education and the Computer Operations, Effects and Merits
Authors: Kehinde Adeyeye Adelabu
Abstract:
Computer applications has completely revolutionized the way of life of people which does not exclude the field of sport education. There are computer technologies which help to enhance teaching in every field of education. Invention of computers has done great to the field of education. This study was therefore carried out to examine the effects and merits of computer operations in Human Kinetics Education and Sports. The study was able to identify the component of computer, uses of computer in Human Kinetics education (sports), computer applications in some branches of human kinetics education. A qualitative research method was employed by the author in gathering experts’ views and used to analyze the effects and merits of computer applications in the field of human kinetics education. No experiment was performed in the cause of carrying out the study. The source of information for the study was text-books, journal, articles, past project reports, internet i.e. Google search engine. Computer has significantly helped to improve Education (Human Kinetic), it has complemented the basic physical fitness testing and gave a more scientific basis to the testing. The use of the software and packages has made cost projections, database applications, inventory control, management of events, word processing, electronic mailing and record keeping easier than the pasts.Keywords: application, computer operation, education, human kinetics
Procedia PDF Downloads 18612197 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 1612196 The Impact of Recurring Events in Fake News Detection
Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair
Abstract:
Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM
Procedia PDF Downloads 2212195 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 15112194 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.Keywords: eye, heat-transfer, keratoplasty laser, surgery
Procedia PDF Downloads 27312193 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 15412192 Detection of Helicobacter Pylori by PCR and ELISA Methods in Patients with Hyperlipidemia
Authors: Simin Khodabakhshi, Hossein Rassi
Abstract:
Hyperlipidemia refers to any of several acquired or genetic disorders that result in a high level of lipids circulating in the blood. Helicobacter pylori infection is a contributing factor in the progression of hyperlipidemia with serum lipid changes. The aim of this study was to detect of Helicobacter pylori by PCR and serological methods in patients with hyperlipidemia. In this case-control study, 174 patients with hyperlipidemia and 174 healthy controls were studied. Also, demographics, physical and biochemical parameters were performed in all samples. The DNA extracted from blood specimens was amplified by H pylori cagA specific primers. The results show that H. pylori cagA positivity was detected in 79% of the hyperlipidemia and in 56% of the control group by ELISA test and 49% of the hyperlipidemia and in 24% of the control group by PCR test. Prevalence of H. pylori infection was significantly higher in hyperlipidemia as compared to controls. In addition, patients with hyperlipidemia had significantly higher values for triglyceride, total cholesterol, LDL-C, waist to hip ratio, body mass index, diastolic and systolic blood pressure and lower levels of HDL-C than control participants (all p < 0.0001). Our result detected the ELISA was a rapid and cost-effective detection and considering the high prevalence of cytotoxigenic H. pylori strains, cag A is suggested as a promising target for PCR and ELISA tests for detection of infection with toxigenic strains. In general, it can be concluded that molecular analysis of H. pylori cagA and clinical parameters are important in early detection of hyperlipidemia and atherosclerosis with H. pylori infection by PCR and ELISA tests.Keywords: Helicobacter pylori, hyperlipidemia, PCR, ELISA
Procedia PDF Downloads 19912191 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array
Procedia PDF Downloads 38512190 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 12512189 Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map
Authors: Hongmin Deng, Qionghua Wang
Abstract:
A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M0 development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST).Keywords: chaos encryption, logistic map, pseudo-random sequence, RFID
Procedia PDF Downloads 40112188 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 11412187 Human Trafficking In North East India
Authors: Neimenuo Kengurusie
Abstract:
Human trafficking is considered a form of slavery in modern day era and a gross violation of human rights and one of the most organized crimes of the day transcending cultures, geography and time. Human trafficking is a highly complex phenomenon involving many actors like victims, survivors, their families, communities and third parties that recruit, transport and exploit the trafficked victims. It takes different forms such as child trafficking, trafficking for labour, trafficking for sexual exploitation, trafficking for organ transplantation etc. and affects virtually every corner of the world. This research draws on a variety of sources, including books, articles, journals, newspaper reports, human rights reports, online materials and interviews. In India, particularly the North East region, the issue of human trafficking has become a concern regionally, nationally and internationally. The focus of this paper is on the North Eastern part of India as it is a socially and economically backward region of the country which makes women and children susceptible to trafficking. Women and children from these regions are trafficked within and outside the state. Therefore, the paper seeks to explore the issue of human trafficking, especially trafficking of women and children in North East India, which receives insufficient attention in literature. The paper seeks to analyze and understand the trend and patterns of trafficking and the mechanisms that reinforces the process and perpetuates the phenomenon of trafficking considering the nature and scope of the problem. The paper also analyzes the anti-trafficking laws initiated by India and the North East states in particular for combating human trafficking in North East India.Keywords: children, human trafficking, North East India, women
Procedia PDF Downloads 48612186 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 14612185 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 15812184 Biological Expressions of Hamilton’s Rule in Human Populations: The Deep Psychological Influence of Defensive and Offensive Motivations Found in Human Conflicts and Sporting Events
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need naturally selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Places Dawkins’s selfish gene as the r, relationship variable; 5) Flipping the equation variable themes (close relationship to distant relationship, and benefit to threat) the new equation can now be used to identify the offensive and defensive sides of conflict; 6) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 6) Pathway to reduce human sacrifice through manipulation of variables. This paper discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 5012183 Muddle Effort for Organized Crime in India: Social Work Concern for Anti Human Trafficking Unit
Authors: Rajkamal Ajmeri, Leena Mehta
Abstract:
Growing magnitude of human trafficking is the indicatory symptom of ill society. Despite of many treaties, legislation and protocols control over human trafficking require additional attention. However, many Anti Human Trafficking Units (AHTU) are working throughout India but it is a fact that incidence pertaining to illegal human trade is not fully under control. Social work as discipline and practice base profession has a lot of concern about situation and the trafficked victims. United state put Indian in tier II watch list because they are not fully complying with the minimum standard of Trafficking Victims Protection laws but they are making a significant effort to bring themselves into compliance with those standards. In order to solve the issue, scientific research of experiences and opinions of government / non government machineries can play an effective role in raising the standard legislation for trafficked victims. Proper study can enhance understanding on various problems faced by government machineries. The study can help in developing the scientific model, which can effectively solve the problem in human trafficking field.Keywords: human trafficking, legislations, victims, social work, government machinery
Procedia PDF Downloads 29812182 Realistic Testing Procedure of Power Swing Blocking Function in Distance Relay
Authors: Farzad Razavi, Behrooz Taheri, Mohammad Parpaei, Mehdi Mohammadi Ghalesefidi, Siamak Zarei
Abstract:
As one of the major problems in protecting large-dimension power systems, power swing and its effect on distance have caused a lot of damages to energy transfer systems in many parts of the world. Therefore, power swing has gained attentions of many researchers, which has led to invention of different methods for power swing detection. Power swing detection algorithm is highly important in distance relay, but protection relays should have general requirements such as correct fault detection, response rate, and minimization of disturbances in a power system. To ensure meeting the requirements, protection relays need different tests during development, setup, maintenance, configuration, and troubleshooting steps. This paper covers power swing scheme of the modern numerical relay protection, 7sa522 to address the effect of the different fault types on the function of the power swing blocking. In this study, it was shown that the different fault types during power swing cause different time for unblocking distance relay.Keywords: power swing, distance relay, power system protection, relay test, transient in power system
Procedia PDF Downloads 38512181 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)
Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud
Abstract:
The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing
Procedia PDF Downloads 7812180 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 11812179 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 22412178 Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population
Authors: H. Imad, Y. Cheah, O. Aamera
Abstract:
The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants.Keywords: encompassing nucleotide positions 37 to 340, HVII, Iraq, mitochondrial DNA, polymorphism, frequency
Procedia PDF Downloads 761