Search results for: gibberellic acid
2093 Pharmacogenetics of Uridine Diphosphate Glucuronosyltransferase (UGT1A9) Genetic Polymorphism on Sodium Valproate Pharmacokinetics in Epilepsy
Authors: Murali Munisamy, Gauthaman Karunakaran, Mubarak Al-Gahtany, Vivekanandhan Subbiah, M. Manjari Tripati
Abstract:
Background: Sodium valproate is a widely prescribed broad-spectrum anti-epileptic drug. It shows high inter-individual variability in pharmacokinetics and pharmacodynamics and has a narrow therapeutic range. We evaluated the effects of polymorphic uridine diphosphate glucuronosyltransferase (UGT1A9) metabolizing enzyme on the pharmacokinetics of sodium valproate in the patients with epilepsy who showed toxicity to therapy. Methods: Genotype analysis of the patients was made with polymerase chain–restriction fragment length polymorphism (RFLP) with sequencing. Plasma drug concentrations were measured with reversed phase high-performance liquid chromatography (HPLC) and concentration–time data were analyzed by using a non-compartmental approach. Results: The results of this study suggested a significant genotypic as well as allelic association with valproic acid toxicity for UGT1A9 polymorphic enzymes. The elimination half-life (t 1/2=40.2 h) of valproic acid was longer and the clearance rate (CL=937 ml/h) was lower in the poor metabolizers group of UGT1A9 polymorphism who showed toxicity than in the intermediate metabolizers group (t1/2=35.5 h, CL=1042 ml/h) or the extensive metabolizers group (t1/2=26. h, CL=1,302 ml/h). Conclusion: Our findings suggest that the UGT1A9 genetic polymorphism plays a significant role in the steady state concentration of sodium valproate, and it thereby has an impact on the toxicity of the sodium valproate used in the patients with epilepsy.Keywords: UGT1A9, sodium valporate, pharmacogenetics, polymorphism
Procedia PDF Downloads 4272092 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models
Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul
Abstract:
Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract
Procedia PDF Downloads 2662091 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)
Authors: Mahmoud A. Abdulhamid
Abstract:
Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation
Procedia PDF Downloads 982090 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats
Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy
Abstract:
Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat
Procedia PDF Downloads 1422089 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils
Authors: Antonella Hadzich, Santiago Flores
Abstract:
Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.Keywords: alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating
Procedia PDF Downloads 1262088 Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries
Authors: Ziani Borhane Eddine Cherif, Hazzi Mohamed, Mouhouche Fazia
Abstract:
The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively.Keywords: aromatic plants, essential oils, no-volatils extracts, bioactive molecules, antioxidant activity, insecticidal activity, antibiotic activity
Procedia PDF Downloads 2222087 Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge
Authors: Sima Shakoorjavan, Mahdieh Eskafi, Dawid Stawski, Somaye Akbari
Abstract:
In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye.Keywords: surface modification, layer-by-layer technique, dendritic materials, PAMAM, dye absorption capacity, PLA nonwoven
Procedia PDF Downloads 882086 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese
Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi
Abstract:
This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese
Procedia PDF Downloads 962085 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration
Authors: Chi-Chang Lin, Jiun-Yan Chiu
Abstract:
Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.Keywords: bone tissue, gellan gum, regeneration, toughness
Procedia PDF Downloads 1472084 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats
Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar
Abstract:
Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.Keywords: MDA, TBA, ciprofloxacin, HPLC-UV
Procedia PDF Downloads 3272083 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway
Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim
Abstract:
Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning
Procedia PDF Downloads 3442082 Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode
Authors: Anahita Izadyar, My Ni Van, Kayleigh Amber Rodriguez, Ilwoo Seok, Elizabeth E. Hood
Abstract:
Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids.Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold electrode, glucose oxidase
Procedia PDF Downloads 1452081 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process
Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova
Abstract:
Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction
Procedia PDF Downloads 3382080 Modeling Palm Oil Quality During the Ripening Process of Fresh Fruits
Authors: Afshin Keshvadi, Johari Endan, Haniff Harun, Desa Ahmad, Farah Saleena
Abstract:
Experiments were conducted to develop a model for analyzing the ripening process of oil palm fresh fruits in relation to oil yield and oil quality of palm oil produced. This research was carried out on 8-year-old Tenera (Dura × Pisifera) palms planted in 2003 at the Malaysian Palm Oil Board Research Station. Fresh fruit bunches were harvested from designated palms during January till May of 2010. The bunches were divided into three regions (top, middle and bottom), and fruits from the outer and inner layers were randomly sampled for analysis at 8, 12, 16 and 20 weeks after anthesis to establish relationships between maturity and oil development in the mesocarp and kernel. Computations on data related to ripening time, oil content and oil quality were performed using several computer software programs (MSTAT-C, SAS and Microsoft Excel). Nine nonlinear mathematical models were utilized using MATLAB software to fit the data collected. The results showed mean mesocarp oil percent increased from 1.24 % at 8 weeks after anthesis to 29.6 % at 20 weeks after anthesis. Fruits from the top part of the bunch had the highest mesocarp oil content of 10.09 %. The lowest kernel oil percent of 0.03 % was recorded at 12 weeks after anthesis. Palmitic acid and oleic acid comprised of more than 73 % of total mesocarp fatty acids at 8 weeks after anthesis, and increased to more than 80 % at fruit maturity at 20 weeks. The Logistic model with the highest R2 and the lowest root mean square error was found to be the best fit model.Keywords: oil palm, oil yield, ripening process, anthesis, fatty acids, modeling
Procedia PDF Downloads 3192079 Assessment of Microalgal Lipids by Enhancing EPA and DHA for Integration into Infant Milk Formulas
Authors: Rkia Lbouhmadi, Mir Youssef
Abstract:
Fatty acids such as DocosaHexaenoic Acid (DHA) and EicosaPentaenoic Acid (EPA) are of growing interest for their positive impact on human health. Oils rich in omega-3 are in high demand, particularly for incorporation into infant milk. Generally omega-3 fatty acids are extracted from oily fish, putting additional pressure on global fish stocks that is experiencing an over exploitation. Therefore, this present work aimed to study the capacity of tree different strains of microalgae for producing lipids rich on Omega-3 fatty acids such as EPA and DHA that can be used to enrich infantile milk. Three different strains were selected for this study; Parachlorella kessleri (GEPEA UMR-CNRS6144, University of Nantes) and Cyclotella spp and Scenedesmus spp (collected from different water bodies that are located in the region of Agadir, Morocco). it examined the impact of various culture conditions on EPA and DHA accumulation in three strains. Lipid composition was analyzed using GC-MS and FTIR. Following a comparative analysis between regular and microalgal oil-supplemented formula milk was carried out by incorporating large droplets of fat containing microalgal fatty acids coated with added phospholipids into the formula milk. Results indicated that culture conditions such as light intensity affected fatty acides production. With 40% increase in Polyunsaturated Fatty Acids (PUFA) compared to Saturated Fatty Acids (SFA). In conclusion, it exploratory study indicates that incorporating large milk phospholipid-coated lipid droplets enriched with microalgae lipids into infant formula may offer improved nutritional benefits for newborns, resembling human milk.Keywords: microalgae oil, INFANT MILK, EPA, DHA
Procedia PDF Downloads 532078 The Effect of Nepodin-Enrich Plant on Dyslipidemia and Hyperglycemia in High-Fat Diet-Induced Obese C57BL/6J Mice
Authors: Mi Kyeong Yu, Seon Jeong Lee, So Young Kim, Bora Choi, Young Mi Lee, Su-Jung Cho, Je Tae Woo, Myung-Sook Choi
Abstract:
A high-fat diet (HFD) induces excessive fat accumulation in white adipose tissue (WAT), which increases metabolic disorders such as obesity, dyslipidemia and type 2 diabetes. Many plants are known to have effects that improve metabolic disorders. Therefore, the aim of this present study is to investigate the effect of nepodin-enrich plant extract on dyslipidemia, hyperglycemia in high fat diet-induced C57BL/6J mice. Male C57BL/6J mice were randomly divided into two groups, and fed HFD (20% fat, w/w) or HFD supplemented with nepodin-enrich plant extract (NPE 0.005%, w/w) for 16 weeks. Body weight and food intake were measured every week. And we also analysed metabolic rates (respiratory quotient), blood glucose level, and plasma high-density lipoprotein (HDL)-cholesterol, free fatty acid, apolipoprotein (apo) A-1 and apo B levels. Food intakes and body weights were not different between NPE group and HFD group, while plasma apo B, free fatty acid levels, and blood glucose concentration were significantly decreased in NPE group than in HFD group. Furthermore, plasma apo A and HDL-cholesterol levels in NPE group were remarkably increased than in HFD group. Metabolic rates (respiratory quotient) were significantly increased in NPE group than in HFD group. These results indicate that NPE can alleviate dyslipidemia, hyperglycemia. Further studies are required to identify the effects of NPE on metabolic disorders.Keywords: dyslipidemia, hyperglycemia, metabolic disorders, nepodin enrich plant extract
Procedia PDF Downloads 3782077 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 902076 Olive Oil (Olea europea L.) Protects against Mercury (II) Induced Oxidative Tissue Damage in Rats
Authors: Ahlem Bahi, Youcef Necib, Sakina Zerizer, Cherif Abdennour, Mohamed Salah Boulakoud
Abstract:
Mercury (II) is a highly toxic metal which induces oxidative stress in the body. In this study, we aimed to investigate the possible protective effect of olive oil, an antioxidant agent, against experimental mercury toxicity in rat model. Administration of mercuric chloride induced significant increase in serum: ALT, AST, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels. Mercuric chloride also induced oxidative stress, as indicate by decreased tissue of GSH level, GSH-Px, and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney and liver weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: AST, ALT, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels and contracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in tissue as compared to control group. Our results implicate that mercury induced oxidative damage in liver and kidney tissue protected by virgin olive oil, with its antioxidant effects.Keywords: mercury, antioxidant enzymes, pro-inflammatory cytokine, virgin olive oil, lipid peroxidation
Procedia PDF Downloads 3652075 Determination of the Phytochemicals Composition and Pharmacokinetics of whole Coffee Fruit Caffeine Extract by Liquid Chromatography-Tandem Mass Spectrometry
Authors: Boris Nemzer, Nebiyu Abshiru, Z. B. Pietrzkowski
Abstract:
Coffee cherry is one of the most ubiquitous agricultural commodities which possess nutritional and human health beneficial properties. Between the two most widely used coffee cherries Coffea arabica (Arabica) and Coffea canephora (Robusta), Coffea arabica remains superior due to its sensory properties and, therefore, remains in great demand in the global coffee market. In this study, the phytochemical contents and pharmacokinetics of Coffeeberry® Energy (CBE), a commercially available Arabica whole coffee fruit caffeine extract, are investigated. For phytochemical screening, 20 mg of CBE was dissolved in an aqueous methanol solution for analysis by mass spectrometry (MS). Quantification of caffeine and chlorogenic acids (CGAs) contents of CBE was performed using HPLC. For the bioavailability study, serum samples were collected from human subjects before and after 1, 2 and 3 h post-ingestion of 150mg CBE extract. Protein precipitation and extraction were carried out using methanol. Identification of compounds was performed using an untargeted metabolomic approach on Q-Exactive Orbitrap MS coupled to reversed-phase chromatography. Data processing was performed using Thermo Scientific Compound Discover 3.3 software. Phytochemical screening identified a total of 170 compounds, including organic acids, phenolic acids, CGAs, diterpenoids and hydroxytryptamine. Caffeine & CGAs make up more than, respectively, 70% & 9% of the total CBE composition. For serum samples, a total of 82 metabolites representing 32 caffeine- and 50 phenolic-derived metabolites were identified. Volcano plot analysis revealed 32 differential metabolites (24 caffeine- and 8 phenolic-derived) that showed an increase in serum level post-CBE dosing. Caffeine, uric acid, and trimethyluric acid isomers exhibited 4- to 10-fold increase in serum abundance post-dosing. 7-Methyluric acid, 1,7-dimethyluric acid, paraxanthine and theophylline exhibited a minimum of 1.5-fold increase in serum level. Among the phenolic-derived metabolites, iso-feruloyl quinic acid isomers (3-, 4- and 5-iFQA) showed the highest increase in serum level. These compounds were essentially absent in serum collected before dosage. More interestingly, the iFQA isomers were not originally present in the CBE extract, as our phytochemical screen did not identify these compounds. This suggests the potential formation of the isomers during the digestion and absorption processes. Pharmacokinetics parameters (Cmax, Tmax and AUC0-3h) of caffeine- and phenolic-derived metabolites were also investigated. Caffeine was rapidly absorbed, reaching a maximum concentration (Cmax) of 10.95 µg/ml in just 1 hour. Thereafter, caffeine level steadily dropped from the peak level, although it did not return to baseline within the 3-hour dosing period. The disappearance of caffeine from circulation was mirrored by the rise in the concentration of its methylxanthine metabolites. Similarly, serum concentration of iFQA isomers steadily increased, reaching maximum (Cmax: 3-iFQA, 1.54 ng/ml; 4-iFQA, 2.47 ng/ml; 5-iFQA, 2.91 ng/ml) at tmax of 1.5 hours. The isomers remained well above the baseline during the 3-hour dosing period, allowing them to remain in circulation long enough for absorption into the body. Overall, the current study provides evidence of the potential health benefits of a uniquely formulated whole coffee fruit product. Consumption of this product resulted in a distinct serum profile of bioactive compounds, as demonstrated by the more than 32 metabolites that exhibited a significant change in systemic exposure.Keywords: phytochemicals, mass spectrometry, pharmacokinetics, differential metabolites, chlorogenic acids
Procedia PDF Downloads 712074 Interaction of Metals with Non-Conventional Solvents
Authors: Evgeny E. Tereshatov, C. M. Folden
Abstract:
Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption
Procedia PDF Downloads 1062073 Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering
Authors: Daniel Canales, Fabián Alvarez, Pablo Varela, Marcela Saavedra, Claudio García, Paula Zapata
Abstract:
Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process.Keywords: electrospun scaffolds, PLA based nanocomposites, calcium oxide nanoparticles, bioactive materials, tissue engineering
Procedia PDF Downloads 982072 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin
Authors: Ndana Mohammed, Abdullahi Musa Sabo
Abstract:
The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.Keywords: biodiesel, characterization, esterification, optimization, transesterification
Procedia PDF Downloads 4252071 Genome-Wide Analysis of BES1/BZR1 Gene Family in Five Plant Species
Authors: Jafar Ahmadi, Zhohreh Asiaban, Sedigheh Fabriki Ourang
Abstract:
Brassinosteroids (BRs) regulate cell elongation, vascular differentiation, senescence and stress responses. BRs signal through the BES1/BZR1 family of transcription factors, which regulate hundreds of target genes involved in this pathway. In this research a comprehensive genome-wide analysis was carried out in BES1/BZR1 gene family in Arabidopsis thaliana, Cucumis sativus, Vitis vinifera, Glycin max, and Brachypodium distachyon. Specifications of the desired sequences, dot plot and hydropathy plot were analyzed in the protein and genome sequences of five plant species. The maximum amino acid length was attributed to protein sequence Brdic3g with 374aa and the minimum amino acid length was attributed to protein sequence Gm7g with 163aa. The maximum Instability index was attributed to protein sequence AT1G19350 equal with 79.99 and the minimum Instability index was attributed to protein sequence Gm5g equal with 33.22. Aliphatic index of these protein sequences ranged from 47.82 to 78.79 in Arabidopsis thaliana, 49.91 to 57.50 in Vitis vinifera, 55.09 to 82.43 in Glycin max, 54.09 to 54.28 in Brachypodium distachyon 55.36 to 56.83 in Cucumis sativus. Overall, data obtained from our investigation contributes a better understanding of the complexity of the BES1/BZR1 gene family and provides the first step towards directing future experimental designs to perform systematic analysis of the functions of the BES1/BZR1 gene family.Keywords: BES1/BZR1, brassinosteroids, phylogenetic analysis, transcription factor
Procedia PDF Downloads 3442070 Presence, Distribution and Form of Calcium Oxalate Crystals in Relation to Age of Actinidia Deliciosa Leaves and Petioles
Authors: Muccifora S., Rinallo C., Bellani L.
Abstract:
Calcium (Ca²+) is an element essential to the plant being involved in plant growth and development. At high concentrations, it is toxic and can influence every stage, process and cellular activity of plant life. Given its toxicity, cells implement mechanisms to compartmentalize calcium in a vacuole, endoplasmic reticulum, mitochondria, plastids and cell wall. One of the most effective mechanisms to reduce the excess of calcium, thus avoiding cellular damage, is its complexation with oxalic acid to form calcium oxalate crystals that are no longer osmotically or physiologically active. However, the sequestered calcium can be mobilized when the plant needs it. Calcium crystals can be accumulated in the vacuole of specialized sink-cells called idioblasts, with different crystalline forms (druse, raphyde and styloid) of diverse physiological meanings. Actinidia deliciosa cv. Hayward presents raphydes and styloid localized in idioblasts in cells of photosynthetic and non-photosynthetic tissues. The purpose of this work was to understand if there is a relationship between the age of Actinidia leaves and the presence, distribution, dimension and shape of oxalate crystals by means of light, fluorescent, polarized and transmission electron microscopy. Three vines from female plants were chosen at the beginning of the season and used throughout the study. The leaves with petioles were collected at various stages of development from the bottom to the shoot of the plants monthly from April to July. The samples were taken in corresponding areas of the central and lateral parts of the leaves and of the basal portion of the petiole. The results showed that in the leaves, the number of raphyde idioblasts decreased with the progress of the growing season, while the styloid idioblasts increased progressively, becoming very numerous in the upper nodes of July. In June and in July samples, in the vacuoles of the highest nodes, a portion regular in shape strongly stained with rubeanic acid was present. Moreover, the chlortetracycline (CTC) staining for localization of free calcium marked the wall of the idioblasts and the wall of the cells near vascular bundles. In April petiole samples, moving towards the youngest nodes, the raphydes idioblast decreased in number and in the length of the single raphydes. Besides, crystals stained with rubeanic acid appeared in the vacuoles of some cells. In June samples, numerous raphyde idioblasts oriented parallel to vascular bundles were evident. Under the electron microscope, numerous idioblasts presented not homogeneous electrondense aggregates of material, in which a few crystals (styloids) in the form of regular holes were scattered. In July samples, an increase in the number of styloid idioblasts in the youngest nodes and little masses stained with CTC near styloids were observed. Peculiar cells stained with rubeanic acid were detected and hypothesized to be involved in the formation of the idioblasts. In conclusion, in Actinidia leaves and petioles, it seems to confirm the hypothesis that the formation of styloid idioblasts can be correlated to increasing calcium levels in growing tissues.Keywords: calcium oxalate crystals, actinidia deliciosa, light and electron microscopy, idioblasts
Procedia PDF Downloads 852069 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst
Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha
Abstract:
Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst
Procedia PDF Downloads 1752068 Toxic Influence of Cypermethrin on Biochemical Changes in Fresh Water Fish, Cyprinus carpio
Authors: Gowri Balaji, Muthusamy Nachiyappan, Ramalingam Venugopal
Abstract:
Amongst the wide spectrum of pesticides, pyrethroids are preferably used rather than organochlorine, organophosphorous and carbamates pesticides due to their high effectiveness. Synthetic pyrethroids which are the chemicals used for the pest control in agriculture are now being excessively used in India. The aim of the present study was to evaluate the adverse effect of cypermethrin on the fresh water fish Cyprinus carpio, the common carp. The effect was assessed by comparing the biochemical parameters in the blood and liver tissues of control fishes with three experimental group of fishes exposed with cypermethrin for 7 days 1/15 Lc50 (E1) 1/10 Lc50 (E2) and 1/5 Lc50 values (E3). After 7 days of exposure, blood was collected and liver and gills was dissected out. The activities of acid phosphatase, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were estimated by standard spectrophotometric techniques in the blood, liver and gills tissue homogenate. Lactate dehydrogenase was significantly decreased in E2 and E3 experimental groups. The activities of acid phosphatase, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase were significantly altered in the experimental groups. All the biochemical parameters studied were adversely affected in the liver and gills of cypermethrin exposed fish. The results obtained from the present study of cypermethrin exposed fishes indicate a marked toxic effect of cypermethrin and also its dose dependent impact on different organs of the fish.Keywords: cypermethrin, Cyprinus carpio, ALT, AST, LDH, liver, gills
Procedia PDF Downloads 2892067 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques
Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik
Abstract:
Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization
Procedia PDF Downloads 2422066 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production
Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez
Abstract:
Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids
Procedia PDF Downloads 1302065 Chemical Composition and Antioxidant Activity of Fresh Chokeberries
Authors: Vesna Tumbas Šaponjac, Sonja Djilas, Jasna Čanadanović-Brunet, Gordana Ćetković, Jelena Vulić, Slađana Stajčić, Milica Vinčić
Abstract:
Substantial interest has been expressed in fruits and berries due to their potential favourable health effects and high content of polyphenols, especially flavonoids and anthocyanins. Chokeberries (Aronia melanocarpa) are dark berries, similar to blackcurrants, that have been used by native Americans both as a food resource and in traditional medicine for treatment of cold. Epidemiological studies revealed positive effects of chokeberries on colorectal cancer, cardiovascular diseases, and various inflammatory conditions. Chokeberries are well known as good natural antioxidants, which contain phenolic compounds, flavonoids, anthocyanidins and antioxidant vitamins. The aim of this study was to provide information on polyphenolic compounds present in fresh chokeberries as well as to determine its antioxidant activity. Individual polyphenolic compounds have been identified and quantified using HPLC/UV-Vis. Results showed that the most dominant phenolic acid was protocatechuic acid (274.23 mg/100 g FW), flavonoid rutin (319.66 mg/100 g FW) and anthocyanin cyanidin-3-galactoside (1532.68 mg/100 g FW). Generally, anthocyanins were predominant compounds in fresh chokeberry (2342.82 mg/100 g FW). Four anthocyanins have been identified in fresh chokeberry and all of them were cyanidin glicosides. Antioxidant activity was determined using spectrophotometric DPPH assay and compared to standard antioxidant compound vitamin C. The resulting EC50 value (amount of fresh chokeberries that scavenge 50% of DPPH radicals) is 0.33 mg vitamin C equivalent/100 g FW. The results of this investigation provide evidence on high contents of phenolic compounds, especially anthocyanins, in chokeberries as well as high antioxidant activity of this fruit.Keywords: chokeberry, polyphenols, antioxidant, DPPH radicals
Procedia PDF Downloads 5772064 Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes
Authors: Moulay Driss Mellaoui, Abdallah Imjjad, Rachid Boutiddar, Haydar Mohammad-Salim, Nivedita Acharjee, Hassan Bourzi, Souad El Issami, Khalid Abbiche, Hanane Zejli
Abstract:
We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding.Keywords: 4-isoxazoline, DFT/B3LYP-D3, regioselectivity, cycloaddition reaction, MEDT, ELF
Procedia PDF Downloads 191