Search results for: fluid mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2548

Search results for: fluid mechanics

1288 Numerical Investigation of Flow Past in a Staggered Tube Bundle

Authors: Kerkouri Abdelkadir

Abstract:

Numerical calculations of turbulent flows are one of the most prominent modern interests in various engineering applications. Due to the difficulty of predicting, following up and studying this flow for computational fluid dynamic (CFD), in this paper, we simulated numerical study of a flow past in a staggered tube bundle, using CFD Code ANSYS FLUENT with several models of turbulence following: k-ε, k-ω and SST approaches. The flow is modeled based on the experimental studies. The predictions of mean velocities are in very good agreement with detailed LDA (Laser Doppler Anemometry) measurements performed in 8 stations along the depth of the array. The sizes of the recirculation zones behind the cylinders are also predicted. The simulations are conducted for Reynolds numbers of 12858. The Reynolds number is set to depend experimental results.

Keywords: flow, tube bundle, ANSYS Fluent, CFD, turbulence, LDA, RANS (k-ε, k-ω, SST)

Procedia PDF Downloads 166
1287 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 256
1286 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 163
1285 Poisson Type Spherically Symmetric Spacetimes

Authors: Gonzalo García-Reyes

Abstract:

Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.

Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter

Procedia PDF Downloads 88
1284 Aerodynamic Analysis of a Frontal Deflector for Vehicles

Authors: C. Malça, N. Alves, A. Mateus

Abstract:

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption

Procedia PDF Downloads 407
1283 Tapered Double Cantilever Beam: Evaluation of the Test Set-up for Self-Healing Polymers

Authors: Eleni Tsangouri, Xander Hillewaere, David Garoz Gómez, Dimitrios Aggelis, Filip Du Prez, Danny Van Hemelrijck

Abstract:

Tapered Double Cantilever Beam (TDCB) is the most commonly used test set-up to evaluate the self-healing feature of thermoset polymers autonomously activated in the presence of crack. TDCB is a modification of the established fracture mechanics set-up of Double Cantilever Beam and is designed to provide constant strain energy release rate with crack length under stable load evolution (mode-I). In this study, the damage of virgin and autonomously healed TDCB polymer samples is evaluated considering the load-crack opening diagram, the strain maps provided by Digital Image Correlation technique and the fractography maps given by optical microscopy. It is shown that the pre-crack introduced prior to testing (razor blade tapping), the loading rate and the length of the side groove are the features that dominate the crack propagation and lead to inconstant fracture energy release rate.

Keywords: polymers, autonomous healing, fracture, tapered double cantilever beam

Procedia PDF Downloads 352
1282 CFD Simulations to Study the Cooling Effects of Different Greening Modifications

Authors: An-Shik Yang, Chih-Yung Wen, Chiang-Ho Cheng, Yu-Hsuan Juan

Abstract:

The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.

Keywords: CFD simulations, Green Coverage Ratio, Urban heat island, Urban Public Park

Procedia PDF Downloads 493
1281 Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation

Authors: Mohamad Saberi, Arash Sohrabi

Abstract:

Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour.

Keywords: TLD, seismic table, structural system, Hunzer linear behaviour

Procedia PDF Downloads 380
1280 Numerical Investigation of Solid Subcooling on a Low Melting Point Metal in Latent Thermal Energy Storage Systems Based on Flat Slab Configuration

Authors: Cleyton S. Stampa

Abstract:

This paper addresses the perspectives of using low melting point metals (LMPMs) as phase change materials (PCMs) in latent thermal energy storage (LTES) units, through a numerical approach. This is a new class of PCMs that has been one of the most prospective alternatives to be considered in LTES, due to these materials present high thermal conductivity and elevated heat of fusion, per unit volume. The chosen type of LTES consists of several horizontal parallel slabs filled with PCM. The heat transfer fluid (HTF) circulates through the channel formed between each two consecutive slabs on a laminar regime through forced convection. The study deals with the LTES charging process (heat-storing) by using pure gallium as PCM, and it considers heat conduction in the solid phase during melting driven by natural convection in the melt. The transient heat transfer problem is analyzed in one arbitrary slab under the influence of the HTF. The mathematical model to simulate the isothermal phase change is based on a volume-averaged enthalpy method, which is successfully verified by comparing its predictions with experimental data from works available in the pertinent literature. Regarding the convective heat transfer problem in the HTF, it is assumed that the flow is thermally developing, whereas the velocity profile is already fully developed. The study aims to learn about the effect of the solid subcooling in the melting rate through comparisons with the melting process of the solid in which it starts to melt from its fusion temperature. In order to best understand this effect in a metallic compound, as it is the case of pure gallium, the study also evaluates under the same conditions established for the gallium, the melting process of commercial paraffin wax (organic compound) and of the calcium chloride hexahydrate (CaCl₂ 6H₂O-inorganic compound). In the present work, it is adopted the best options that have been established by several researchers in their parametric studies with respect to this type of LTES, which lead to high values of thermal efficiency. To do so, concerning with the geometric aspects, one considers a gap of the channel formed by two consecutive slabs, thickness and length of the slab. About the HTF, one considers the type of fluid, the mass flow rate, and inlet temperature.

Keywords: flat slab, heat storing, pure metal, solid subcooling

Procedia PDF Downloads 141
1279 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma

Abstract:

In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: heat transfer, radiation, MHD flow, porous medium

Procedia PDF Downloads 441
1278 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: CFD simulations, natural ventilation, microclimate, wind environment

Procedia PDF Downloads 575
1277 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 91
1276 Research of Possibilities to Influence the Metal Cross-Section Deformation during Cold Rolling with the Help of Local Deformation Zone Creation

Authors: A. Pesin, D. Pustovoytov, A. Kolesnik, M. Sverdlik

Abstract:

Rolling disturbances often arise which might lead to defects such as nonflatness, warpage, corrugation, etc. Numerous methods of compensation for such disturbances are well known. However, most of them preserve the initial form of transverse flow of the strip, such as convex, concave or asymmetric (for example, sphenoid). Sometimes, the form inherited (especially asymmetric) is undesirable. Technical solutions have been developed which include providing conditions for transverse metal flow in deformation zone. It should be noted that greater reduction is followed by transverse flow increase, while less reduction causes a corresponding decrease in metal flow for differently deformed metal lengths to remain approximately the same and in order to avoid the defects mentioned above. One of the solutions suggests sequential strip deforming from rectangular cross-section profile with periodical rectangular grooves back into rectangular profile again. The work was carried out in DEFORM 3D program complex. Experimental rolling was performed on laboratory mill 150. Comparison of experimental and theoretical results demonstrated good correlation.

Keywords: FEM, cross-section deformation, mechanical engineering, applied mechanics

Procedia PDF Downloads 348
1275 Particle Migration in Shear Thinning Viscoelastic Fluid

Authors: Shamik Hazra, Sushanta Mitra, Ashis Sen

Abstract:

Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel.

Keywords: lateral migration, microparticle, polyethylene oxide, shear thinning, viscoelasticity

Procedia PDF Downloads 150
1274 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 324
1273 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 515
1272 Modelling of Creep in a Thick-Walled Cylindrical Vessel Subjected to Internal Pressure

Authors: Tejeet Singh, Ishvneet Singh, Vinay Gupta

Abstract:

The present study focussed on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminium matrix reinforced with silicon-carbide in particulate form. The creep behaviour of the composite material has been described by the threshold stress based creep law. The value of stress exponent appearing in the creep law was selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stresses and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: creep, composite, cylindrical vessel, internal pressure

Procedia PDF Downloads 577
1271 Analysis of Labor Effectiveness at Green Tea Dry Sorting Workstation for Increasing Tea Factory Competitiveness

Authors: Bayu Anggara, Arita Dewi Nugrahini, Didik Purwadi

Abstract:

Dry sorting workstation needs labor to produce green tea in Gambung Tea Factory. Observation results show that there is labor who are not working at the moment and doing overtime jobs to meet production targets. The measurement of the level of labor effectiveness has never been done before. The purpose of this study is to determine the level of labor effectiveness and provide recommendations for improvement based on the results of the Pareto diagram and Ishikawa diagram. The method used to measure the level of labor effectiveness is Overall Labor Effectiveness (OLE). OLE had three indicators which are availability, performance, and quality. Recommendations are made based on the results of the Pareto diagram and Ishikawa diagram for indicators that do not meet world standards. Based on the results of the study, the OLE value was 68.19%. Recommendations given to improve labor performance are adding mechanics, rescheduling rest periods, providing special training for labor, and giving rewards to labor. Furthermore, the recommendations for improving the quality of labor are procuring water content measuring devices, create material standard policies, and rescheduling rest periods.

Keywords: Ishikawa diagram, labor effectiveness, OLE, Pareto diagram

Procedia PDF Downloads 230
1270 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 325
1269 Numerical Investigation of the Effect of the Spark Plug Gap on Engine-Like Conditions

Authors: Fernanda Pinheiro Martins, Pedro Teixeira Lacava

Abstract:

The objective of this research is to analyze the effects of different spark plug conditions in engine-like conditions by applying computational fluid dynamics analysis. The 3D models applied consist of 3-Zones Extended Coherent Flame (ECFM-3Z) and Imposed Stretch Spark Ignition Model (ISSIM), respectively, for the combustion and the spark plug modelling. For this study, it was applied direct injection fuel system in a single cylinder engine operating with E0. The application of realistic operating conditions (load and speed) to the different cases studied will provide a deeper understanding of the effects of the spark plug gap, a result of parts outwearing in most of the cases, to the development of the combustion in engine-like conditions.

Keywords: engine, CFD, direct injection, combustion, spark plug

Procedia PDF Downloads 130
1268 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
1267 Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel

Authors: Bruno Vicente, Sandra Rafael, Vera Rodrigues, Sandra Sorte, Sara Silva, Ana Isabel Miranda, Carlos Borrego

Abstract:

Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions).

Keywords: urban microclimate, pedestrian comfort, numerical modelling, wind tunnel experiments

Procedia PDF Downloads 232
1266 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model

Authors: Seydou Sinde

Abstract:

The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.

Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression

Procedia PDF Downloads 84
1265 ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel

Authors: Hyun-Woo Jun, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee

Abstract:

The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed.

Keywords: coupled problems, electric motors, equivalent circuits, fluid flow, thermal analysis

Procedia PDF Downloads 620
1264 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space

Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson

Abstract:

Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.

Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling

Procedia PDF Downloads 235
1263 Solution of the Blast Wave Problem in Dusty Gas

Authors: Triloki Nath, R. K. Gupta, L. P. Singh

Abstract:

The aim of this paper is to find the new exact solution of the blast wave problem in one-dimensional unsteady adiabatic flow for generalized geometry in a compressible, inviscid ideal gas with dust particles. The density of the undisturbed region is assumed to vary according to a power law of the distance from the point of explosion. The exact solution of the problem in form of a power in the distance and the time is obtained. Further, the behaviour of the total energy carried out by the blast wave for planar, cylindrically symmetric and spherically symmetric flow corresponding to different Mach number of the fluid flow in dusty gas is presented. It is observed that the presence of dust particles in the gas yields more complex expression as compared to the ordinary Gasdynamics.

Keywords: shock wave, blast wave, dusty gas, strong shock

Procedia PDF Downloads 332
1262 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 64
1261 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer

Authors: Buti Suryabrahmam, V. A. Raghunathan

Abstract:

We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.

Keywords: alcohols, bending rigidity, DMPC, lipid bilayers

Procedia PDF Downloads 147
1260 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel

Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee

Abstract:

Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.

Keywords: synthetic jets, microchannel, electronic cooling, computational fluid dynamics

Procedia PDF Downloads 199
1259 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 352