Search results for: epoxy molding compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2774

Search results for: epoxy molding compounds

1514 The Antitumor Activity of Eu (III) and Er (III) Complexes of 3 - (1H-Benzimidazol-2-Yl) - 6 - Methyl - 2 (1H) - Quinolinone

Authors: Xing Lu, Yi-ming Wu, Yan-hong Zhu, Zhen-feng Chen, Hong Liang, Yan Peng

Abstract:

[Eu(BMQ)2(NO3)3(CH3OH)(H2O)] (1),and [Er(BMQ)2(NO3)3(CH3OH)(H2O)] (2),were synthesized. Compounds 1 and 2 exhibit a certain extent cytotoxicity against Hep G2, Hela 229, MGC80-3 and BEL-7404 cell lines invitro, with IC50 values in the14.51±1.41μM to 52.49±4.01μM range. Compound 1 exhibited significantly enhanced cytotoxicity against MGC80-3 cell line, comparing with free 3-(1H-benzimidazol-2-yl)-6-methyl-2(1H)- quinolinone. The binding abilities of 1 to DNA were stronger than that of 2. Intercalation is the most probable binding mode for both the complexes.

Keywords: quinolinone, Eu(II) complex, Er(III) complex, cytotoxicity.

Procedia PDF Downloads 583
1513 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.

Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy

Procedia PDF Downloads 274
1512 Constraints on Source Rock Organic Matter Biodegradation in the Biogenic Gas Fields in the Sanhu Depression, Qaidam Basin, Northwestern China: A Study of Compound Concentration and Concentration Ratio Changes Using GC-MS Data

Authors: Mengsha Yin

Abstract:

Extractable organic matter (EOM) from thirty-six biogenic gas source rocks from the Sanhu Depression in Qaidam Basin in northwestern China were obtained via Soxhlet extraction. Twenty-nine of them were conducted SARA (Saturates, Aromatics, Resins and Asphaltenes) separation for bulk composition analysis. Saturated and aromatic fractions of all the extractions were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) to investigate the compound compositions. More abundant n-alkanes, naphthalene, phenanthrene, dibenzothiophene and their alkylated products occur in samples in shallower depths. From 2000m downward, concentrations of these compounds increase sharply, and concentration ratios of more-over-less biodegradation susceptible compounds coincidently decrease dramatically. ∑iC15-16, 18-20/∑nC15-16, 18-20 and hopanoids/∑n-alkanes concentration ratios and mono- and tri-aromatic sterane concentrations and concentration ratios frequently fluctuate with depth rather than trend with it, reflecting effects from organic input and paleoenvironments other than biodegradation. Saturated and aromatic compound distributions on the saturates and aromatics total ion chromatogram (TIC) traces of samples display different degrees of biodegradation. Dramatic and simultaneous variations in compound concentrations and their ratios at 2000m and their changes with depth underneath cooperatively justified the crucial control of burial depth on organic matter biodegradation scales in source rocks and prompted the proposition that 2000m is the bottom depth boundary for active microbial activities in this study. The study helps to better curb the conditions where effective source rocks occur in terms of depth in the Sanhu biogenic gas fields and calls for additional attention to source rock pore size estimation during biogenic gas source rock appraisals.

Keywords: pore space, Sanhu depression, saturated and aromatic hydrocarbon compound concentration, source rock organic matter biodegradation, total ion chromatogram

Procedia PDF Downloads 141
1511 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan

Authors: Emad A. Ahmed

Abstract:

Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.

Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics

Procedia PDF Downloads 647
1510 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 176
1509 Synthesis, Characterization and Rheological Properties of Boronoxide, Polymer Nanocomposites

Authors: Mehmet Doğan, Mahir Alkan, Yasemin Turhan, Zürriye Gündüz, Pinar Beyli, Serap Doğan

Abstract:

Advances and new discoveries in the field of the material science on the basis of technological developments have played an important role. Today, material science is branched the lower branches such as metals, nonmetals, chemicals, polymers. The polymeric nano composites have found a wide application field as one of the most important among these groups. Many polymers used in the different fields of the industry have been desired to improve the thermal stability. One of the ways to improve this property of the polymers is to form the nano composite products of them using different fillers. There are many using area of boron compounds and is increasing day by day. In order to the further increasing of the variety of using area of boron compounds and industrial importance, it is necessary to synthesis of nano-products and to find yourself new application areas of these products. In this study, PMMA/boronoxide nano composites were synthesized using solution intercalation, polymerization and melting methods; and PAA/boronoxide nano composites using solution intercalation method. Furthermore, rheological properties of nano composites synthesed according to melting method were also studied. Nano composites were characterized by XRD, FTIR-ATR, DTA/TG, BET, SEM, and TEM instruments. The effects of filler material amount, solvent types and mediating reagent on the thermal stability of polymers were investigated. In addition, the rheological properties of PMMA/boronoxide nano composites synthesized by melting method were investigated using High Pressure Capillary Rheometer. XRD analysis showed that boronoxide was dispersed in polymer matrix; FTIR-ATR that there were interactions with boronoxide between PAA and PMMA; and TEM that boronoxide particles had spherical structure, and dispersed in nano sized dimension in polymer matrix; the thermal stability of polymers was increased with the adding of boronoxide in polymer matrix; the decomposition mechanism of PAA was changed. From rheological measurements, it was found that PMMA and PMMA/boronoxide nano composites exhibited non-Newtonian, pseudo-plastic, shear thinning behavior under all experimental conditions.

Keywords: boronoxide, polymer, nanocomposite, rheology, characterization

Procedia PDF Downloads 410
1508 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 505
1507 Algae for Wastewater Treatment and CO₂ Sequestration along with Recovery of Bio-Oil and Value Added Products

Authors: P. Kiran Kumar, S. Vijaya Krishna, Kavita Verma1, V. Himabindu

Abstract:

Concern about global warming and energy security has led to increased biomass utilization as an alternative feedstock to fossil fuels. Biomass is a promising feedstock since it is abundant and cheap and can be transformed into fuels and chemical products. Microalgae biofuels are likely to have a much lower impact on the environment. Microalgae cultivation using sewage with industrial flue gases is a promising concept for integrated biodiesel production, CO₂ sequestration, and nutrients recovery. Autotrophic, Mixotrophic, and Heterotrophic are the three modes of cultivation for microalgae biomass. Several mechanical and chemical processes are available for the extraction of lipids/oily components from microalgae biomass. In organic solvent extraction methods, a prior drying of biomass and recovery of the solvent is required, which are energy-intensive. Thus, the hydrothermal process overcomes the drawbacks of conventional solvent extraction methods. In the hydrothermal process, the biomass is converted into oily components by processing in a hot, pressurized water environment. In this process, in addition to the lipid fraction of microalgae, other value-added products such as proteins, carbohydrates, and nutrients can also be recovered. In the present study was (Scenedesmus quadricauda) was isolated and cultivated in autotrophic, heterotrophic, and mixotrophically using sewage wastewater and industrial flue gas in batch and continuous mode. The harvested algae biomass from S. quadricauda was used for the recovery of lipids and bio-oil. The lipids were extracted from the algal biomass using sonication as a cell disruption method followed by solvent (Hexane) extraction, and the lipid yield obtained was 8.3 wt% with Palmitic acid, Oleic acid, and Octadeonoic acid as fatty acids. The hydrothermal process was also carried out for extraction of bio-oil, and the yield obtained was 18wt%. The bio-oil compounds such as nitrogenous compounds, organic acids, and esters, phenolics, hydrocarbons, and alkanes were obtained by the hydrothermal process of algal biomass. Nutrients such as NO₃⁻ (68%) and PO₄⁻ (15%) were also recovered along with bio-oil in the hydrothermal process.

Keywords: flue gas, hydrothermal process, microalgae, sewage wastewater, sonication

Procedia PDF Downloads 126
1506 Investigation of Mode II Fracture Toughness in Orthotropic Materials

Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi

Abstract:

Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.

Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM

Procedia PDF Downloads 345
1505 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure

Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour

Abstract:

The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.

Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase

Procedia PDF Downloads 413
1504 In-Situ Synthesis of Zinc-Containing MCM-41 and Investigation of Its Capacity for Removal of Hydrogen Sulfide from Crude Oil

Authors: Nastaran Hazrati, Ali Akbar Miran Beigi, Majid Abdouss, Amir Vahid

Abstract:

Hydrogen sulfide is the most toxic gas of crude oil. Adsorption is an energy-efficient process used to remove undesirable compounds such as H2S in gas or liquid streams by passing the stream through a media bed composed of an adsorbent. In this study, H2S of Iran crude oil was separated via cold stripping then zinc incorporated MCM-41 was synthesized via an in-situ method. ZnO functionalized mesoporous silica samples were characterized by XRD, N2 adsorption and TEM. The obtained results of adsorption of H2S showed superior ability of all the materials and with an increase in ZnO amount adsorption was increased.

Keywords: MCM-41, ZnO, H2S removal, adsorption

Procedia PDF Downloads 447
1503 Degradation Study of Food Colorants by SingletOxygen

Authors: A. T. Toci, M. V. B. Zanoni

Abstract:

The advanced oxidation processes have been defined as destructive technologies treatment of wastewater. These involve the formation of powerful oxidizing agents (usually hydroxyl radical .OH) capable of reacting with organic compounds present in wastewater, transforming damaging substances in CO2 and H2O (mineralization) or other innocuous products. However, the photochemical degradation with singlet oxygen has been little explored as oxidative pathway for the treatment of effluents containing food colorants. The molecular oxygen is an effective suppressor of organic molecules in the triplet excited state. One of the possible results of the physical withdrawal is the formation of singlet oxygen. Studies with singlet oxygen (1O2) show an high reactivity of the excited state of the molecule with olefins, aromatic hydrocarbons and a number of other organic and inorganic compounds. Its reactivity is about 2500 times larger than the oxygen in the ground state. Thus, in this work, it was studied the degradation of some dyes used in food industry (tartrazine, sunset yellow, erythrosine and carmoisine) by singlet oxygen. The sensitizer used for generating the 1O2 was methylene blue, which has a quantum yield generation of 0.50. Samples were prepared in water at a concentration of 5 ppm and irradiated with a sunlight simulator (Newport brand, model no. 67005) by consecutive 8h. The absorption spectra of UV-Vis molecules were made each hour irradiation. The degradation kinetics for each dye was determined using the maximum length of each dye absorption. The analysis by UV-Vis revealed that the processes were very efficient for the colorants sunset yellow and carmoisine. Both presented degradation kinetics of order zero with degradation constants 0.416 and 0.104, respectively. In the case of sunset yellow degradation reached 53% after 7h irradiation, Demonstrating the process efficiency. The erithrosine presented during the period irradiated a oscillating degradation kinetics, which requires further study. In the other hand, tartrazine was stable in the presence of 1O2. The investigation of the dyes degradation products owned degradation by 1O2 are underway, the techniques used for this are MS and NMR. The results of this study will enable the application of the cleanest methods for the treatment of industrial effluents, as there are other non-toxic and polluting molecules to generate 1O2.

Keywords: food colourants, singlet oxygen, degradation, wastewater, oxidative

Procedia PDF Downloads 389
1502 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model

Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche

Abstract:

Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.

Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins

Procedia PDF Downloads 281
1501 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 197
1500 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 238
1499 Thriving Private-Community Partnerships in Ecotourism: Perspectives from Fiji’s Upper Navua Conservation Area

Authors: Jeremy Schultz, Kelly Bricker

Abstract:

Ecotourism has proven itself to be a forerunner in the advancement of environmental conservation all the while supporting cultural tradition, uniqueness, and pride among indigenous communities. Successful private-community partnerships associated with ecotourism operations are vital to the overall prosperity of both the businesses and the local communities. Such accomplishments can be seen through numerous livelihood goals including income, food security, health, reduced vulnerability, governance, and empowerment. Private-community partnerships also support global initiatives such as the sustainable development goals and sustainable development frameworks including those proposed by the United Nations World Tourism Organization (WTO). Understanding such partnerships assists not only large organizations such as the WTO, but it also benefits smaller ecotourism operators and entrepreneurs who are trying to achieve their sustainable tourism development goals. This study examined the partnership between an ecotourism company (Rivers Fiji) and two rural villages located in Fiji’s Upper Navua Conservation Area. Focus groups were conducted in each village. Observation journals were also used to record conversations outside of the focus groups. Data were thematically organized and analyzed to offer researcher interpretations and understandings. This research supported the notion that respectful and emboldening partnerships between communities and private enterprise are vital to the composition of successful ecotourism operations that support sustainable development protocol. Understanding these partnerships can assist in shaping future ecotourism development and re-molding existing businesses. This study has offered an example of a thriving partnership through community input and critical researcher analysis. Research has identified six contributing factors to successful ecotourism partnerships, and this study provides additional support to that framework.

Keywords: community partnerships, conservation areas, ecotourism, Fiji, sustainability

Procedia PDF Downloads 121
1498 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 64
1497 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 103
1496 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 252
1495 Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf

Authors: H. Alijani, M. Jabari, S. Matroodi, H. Zolqarnein, A. Sharafi, I. Zamani

Abstract:

Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities.

Keywords: antibacterial activity, antifungal activity, marine actinomycetes, Persian Gulf

Procedia PDF Downloads 287
1494 Distribution of Antioxidants between Sour Cherry Juice and Pomace

Authors: Sonja Djilas, Gordana Ćetković, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Slađana Stajčić, Jelena Vulić, Milica Vinčić

Abstract:

In recent years, interest in food rich in bioactive compounds, such as polyphenols, increased the advantages of the functional food products. Bioactive components help to maintain health and prevention of diseases such as cancer, cardiovascular and many other degenerative diseases. Recent research has shown that the fruit pomace, a byproduct generated from the production of juice, can be a potential source of valuable bioactive compounds. The use of fruit industrial waste in the processing of functional foods represents an important new step for the food industry. Sour cherries have considerable nutritional, medicinal, dietetic and technological value. According to the production volume of cherries, Serbia ranks seventh in the world, with a share of 7% of the total production. The use of sour cherry pomace has so far been limited to animal feed, even though it can be potentially a good source of polyphenols. For this study, local variety of sour cherry cv. ‘Feketićka’ was chosen for its more intensive taste and deeper red color, indicating high anthocyanin content. The contents of total polyphenols, flavonoids and anthocyanins, as well as radical scavenging activity on DPPH radicals and reducing power of sour cherry juice and pomace were compared using spectrophotometrical assays. According to the results obtained, 66.91% of total polyphenols, 46.77% of flavonoids, 46.77% of total anthocyanins and 47.88% of anthocyanin monomers from sour cherry fruits have been transferred to juice. On the other hand, 29.85% of total polyphenols, 33.09% of flavonoids, 53.23% of total anthocyanins and 52.12% of anthocyanin monomers remained in pomace. Regarding radical scavenging activity, 65.51% of Trolox equivalents from sour cherries were exported to juice, while 34.49% was left in pomace. However, reducing power of sour cherry juice was much stronger than pomace (91.28% and 8.72% of Trolox equivalents from sour cherry fruits, respectively). Based on our results it can be concluded that sour cherry pomace is still a rich source of natural antioxidants, especially anthocyanins with coloring capacity, therefore it can be used for dietary supplements development and food fortification.

Keywords: antioxidants, polyphenols, pomace, sour cherry

Procedia PDF Downloads 307
1493 Electronic, Structure and Magnetic Properties of KXF3(X= Fe, Co, Mn, V) from Ab Initio Calculations

Authors: M. Ibrir, S. Berri, S. Lakel, D. Maouche And Y. Medkour

Abstract:

We have performed first-principle calculations of the structural, electronic and magnetic properties of KFeF3, KCoF3, KMnF3, KVF3, using full-potential linearized augmented plane-wave (FP-LAPW) scheme within GGA. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Also, we have presented our results of the band structure and the density of states. The magnetic moments of KFeF3, KCoF3, KMnF3, KVF3 compounds are in most came from the exchange-splitting of X-3d orbital.

Keywords: Ab initio calculations, electronic structure, magnetic materials

Procedia PDF Downloads 406
1492 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 151
1491 Tourism as Benefactor to Peace amidst the Structural Conflict: An Exploratory Case Study of Nepal

Authors: Pranil Kumar Upadhayaya

Abstract:

While peace is dividend to tourism, tourism can also be a vital force for world peace. The existing body of knowledge on a tripartite complex nexus between tourism, peace and conflict reveals that tourism is benefactor to peace and sensitive to conflict. By contextualizing the ongoing sporadic structural conflict in the transitional phase in the aftermath of a decade long (1996-2006), Maoist armed conflict in Nepal, the purpose of this study is to explore the potentials of tourism in peace-building. The outcomes of this research paper is based on the mixed methods of research (qualitative and quantitative). Though the armed conflict ended with the comprehensive peace agreement in 2006 but there is constant manifestations of non-violent structural conflicts, which continue to threaten the sustainability of tourism industry. With the persistent application of coping strategies, tourism is found resilient during the ongoing structural political conflict. The strong coping abilities of the private sector of tourism industry have also intersected with peace-building efforts with more reactive and less proactive (pro-peace) engagements. This paper ascertains about the application of the ‘theory of tourism security’ by Nepalese tourism industry while coping with conflict and reviving, and sustaining. It reveals that the multiple verities of tourism at present has heterogeneous degree of peace potentials. The opportunities of ‘peace through tourism’ can be promoted subject to its molding with responsible, sustainable and participatory characteristics. This paper comes out with pragmatic policy recommendations for strengthening the position of tourism as a true peace-builder: (a) a broad shift from mainstream conventional tourism to the community based rural with local participation and ownership to fulfill Nepal’s potentials for peace, and (b) building and applications of the managerial and operational codes of conducts for owners and workers (labor unions) at all tourism enterprises and strengthen their practices.

Keywords: code of conduct, community based tourism, conflict, peace-building, tourism

Procedia PDF Downloads 250
1490 Synthesis and Antimicrobial Profile of Newer Schiff Bases and Thiazolidinone Derivatives

Authors: N. K. Fuloria, S. Fuloria, R. Gupta

Abstract:

Esterification of p-bromo-m-cresol offered 2-(4-bromo-3-methyl phenoxy)acetate (1), which was hydrazinated to yield 2-(4-bromo-3-methyl phenoxy)aceto hydrazide (2). Compound (2) was reacted with different aromatic aldehydes to yield N-(substituted benzylidiene)-2-(4-bromo-3-methyl phenoxy)acetamide(3a-c). Cyclization of compound (3a-c) with thioglycolic acid yielded 2-(4-bromo-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) acetamide (4a-c). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities.

Keywords: imines, thiazolidinone, schiff base, antimicrobial

Procedia PDF Downloads 424
1489 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid

Authors: Byung Il You, Ryun Oh, Gyo Woo Lee

Abstract:

Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).

Keywords: manhole lid, iron frame, structural design, computer simulation

Procedia PDF Downloads 262
1488 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 121
1487 An Analysis of Twitter Use of Slow Food Movement in the Context of Online Activism

Authors: Kubra Sultan Yuzuncuyil, Aytekin İsman, Berkay Bulus

Abstract:

With the developments of information and communication technologies, the forms of molding public opinion have changed. In the presence of Internet, the notion of activism has been endowed with digital codes. Activists have engaged the use of Internet into their campaigns and the process of creating collective identity. Activist movements have been incorporating the relevance of new communication technologies for their goals and opposition. Creating and managing activism through Internet is called Online Activism. In this main, Slow Food Movement which was emerged within the philosophy of defending regional, fair and sustainable food has been engaging Internet into their activist campaign. This movement supports the idea that a new food system which allows strong connections between plate and planet is possible. In order to make their voices heard, it has utilized social networks and develop particular skills in the framework online activism. This study analyzes online activist skills of Slow Food Movement (SFM) develop and attempts to measure its effectiveness. To achieve this aim, it adopts the model proposed by Sivitandies and Shah and conduct both qualitiative and quantiative content analysis on social network use of Slow Food Movement. In this regard, the sample is chosen as the official profile and analyzed between in a three month period respectively March-May 2017. It was found that SFM develops particular techniques that appeal to the model of Sivitandies and Shah. The prominent skill in this regard was found as hyperlink abbreviation and use of multimedia elements. On the other hand, there are inadequacies in hashtag and interactivity use. The importance of this study is that it highlights and discusses how online activism can be engaged into a social movement. It also reveals current online activism skills of SFM and their effectiveness. Furthermore, it makes suggestions to enhance the related abilities and strengthen its voice on social networks.

Keywords: slow food movement, Twitter, internet, online activism

Procedia PDF Downloads 261
1486 Biosynthesis of Tumor Inhibitory Podophyllotoxin, Quercetin and Kaempferol from Callogenesis of Dysosma Pleiantha (Hance) Woodson

Authors: Palaniyandi Karuppaiya, Hsin Sheng Tsay, Fang Chen

Abstract:

Medicinal herbs do represent a huge and noteworthy reservoir for novel anticancer drugs discovery. Dysosma pleiantha (Hance) Woodson (Berberidaceae), one of the oldest traditional Chinese medicinal herb, highly prized by the mountain tribes of Taiwan and China for its medicinal properties contained pharmaceutically important antitumor compounds podophyllotoxin, quercetin and kaempferol. Among lignans, podophyllotoxin is an active antitumor compound and has now been modified to produce clinically useful drugs etoposide and teniposide. In recent years, natural populations of D. peliantha have declined considerably due to anthropogenic activities such as habitat destruction and commercial exploitation for medicinal applications. As to its overall conservation status, D. pleiantha has been ranked as threatened on the China Species Red List. In the present study, an efficient in vitro callus culture system of D. pleiantha was established on Gamborg’s medium with various combinations and concentrations of different auxins and cytokinins under dark condition. Best callus induction was recorded in 2 mg/L 2, 4 - Dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin and the maximum callus proliferation was achieved at 1 mg/L 2,4-D. Among the explants tested, maximum callus induction (86 %) was achieved from tender leaves. Hence, in subsequent experiments, leaf callus was further investigated for suitable callus biomass and production level of anticancer compounds under the influence of different additives. A maximum fresh callus biomass (8.765 g) was recorded in callus proliferation medium contained 500 mg/L casein hydrolysate. High performance liquid chromatography results revealed that the addition of different concentrations of peptone (1, 2 and 4 g/L) in callus proliferation medium enhanced podophyllotoxin (16 fold), quercetin (12 fold) and kaempferol (5 fold) accumulation than control. Thus, the established in vitro callus culture under the influence of different additives may offer an alternative source of enhanced production of podophyllotoxin, kaempferol and quecertin without harming natural plant population.

Keywords: dysosma pleiantha, kaempferol, podophyllotoxin, quercetin

Procedia PDF Downloads 265
1485 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 72