Search results for: community detection
6570 Community Perceptions and Attitudes Regarding Wildlife Crime in South Africa
Authors: Louiza C. Duncker, Duarte Gonçalves
Abstract:
Wildlife crime is a complex problem with many interconnected facets, which are generally responded to in parts or fragments in efforts to “break down” the complexity into manageable components. However, fragmentation increases complexity as coherence and cooperation become diluted. A whole-of-society approach has been developed towards finding a common goal and integrated approach to preventing wildlife crime. As part of this development, research was conducted in rural communities adjacent to conservation areas in South Africa to define and comprehend the challenges faced by them, and to understand their perceptions of wildlife crime. The results of the research showed that the perceptions of community members varied - most were in favor of conservation and of protecting rhinos, only if they derive adequate benefit from it. Regardless of gender, income level, education level, or access to services, conservation was perceived to be good and bad by the same people. Even though people in the communities are poor, a willingness to stop rhino poaching does exist amongst them, but their perception of parks not caring about people triggered an attitude of not being willing to stop, prevent or report poaching. Understanding the nuances, the history, the interests and values of community members, and the drivers behind poaching mind-sets (intrinsic or driven by transnational organized crime) is imperative to create sustainable and resilient communities on multiple levels that make a substantial positive impact on people’s lives, but also conserve wildlife for posterity.Keywords: community perceptions, conservation, rhino poaching, whole-of-society approach, wildlife crime
Procedia PDF Downloads 2386569 Pilot Trial of Evidence-Based Integrative Group Therapy to Improve Executive Functioning among Adults: Implications for Community Mental Health and Training Clinics
Authors: B. Parchem, M. Watanabe, D. Modrakovic, L. Mathew, A. Franklin, M. Cao, R. E. Broudy
Abstract:
Objective: Executive functioning (EF) deficits underlie several mental health diagnoses including ADHD, anxiety, and depression. Community mental health clinics face extensive waitlists for services with many referrals involving EF deficits. A pilot trial of a four-week group therapy was developed using key components from Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), and mindfulness with an aim to improve EF skills and offer low-fee services. Method: Eight adults (M = 34.5) waiting for services at a community clinic were enrolled in a four-week group therapy at an in-house training clinic for doctoral trainees. Baseline EF, pre-/post-intervention ADHD and distress symptoms, group satisfaction, and curriculum helpfulness were assessed. Results: Downward trends in ADHD and distress symptoms pre/post-intervention were not significant. Favorable responses on group satisfaction and helpfulness suggest clinical utility. Conclusion: Preliminary pilot data from a brief group therapy to improve EF may be an efficacious, acceptable, and feasible intervention for adults waiting for services at community mental health and training clinics where there are high demands and limits to services and staffs.Keywords: executive functioning, cognitive-behavioral therapy, dialectical behavior therapy, mindfulness, adult group therapy
Procedia PDF Downloads 1636568 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm
Procedia PDF Downloads 1706567 Intensive Intercultural English Language for Enhanced School Community Engagement: An Exploratory Study Applied to Parents from Language Backgrounds Other Than English in a Regional Australian Primary School
Authors: Ann Dashwood
Abstract:
Using standard Australian English with confidence is a cultural expectation of parents of primary school aged children who want to engage effectively with their children’s teachers and school administration. That confidence in support of their children’s learning at school is seldom experienced by parents whose first language is not English. Sharing language with competence in an intercultural environment is the common denominator for meaningful communication and engagement to occur in a school community. Experience in relevant interactive sessions is known to enhance engagement and participation. The purpose of this paper is to identify interactional settings for which parents who are isolated from the daily use of functional Australian cultural language learned to engage more effectively in their children’s learning at school. The outcomes measured parents’ intercultural engagement with classroom teachers and attention to the school’s administrative procedures. The study used quantitative and qualitative methods. The principles of communicative task-based language learning combined with intercultural communication principles provided the theoretical base for intensive English task-based learning and engagement. The quantitative analysis examined data samples collected by classroom teachers and administrators and parents’ writing samples. Interviews and observations qualitatively informed the study. Currently significant numbers of projects are active in community centres and schools to enhance English language knowledge of parents from Language Backgrounds Other Than English (LBOTE). The study was significant to explore the effects of conducting intensive English with parents of varied English language backgrounds by targeting language use for social interactions in the community, specific engagement in school activities, cultural interaction with teachers and responsiveness to complying with school procedures.Keywords: engagement, intercultural communication, LBOTE, school community
Procedia PDF Downloads 1076566 Challenges for the Implementation of Community Led Total Sanitation in Rural Malawi
Authors: Save Kumwenda, Khumbo Kalulu, Kondwani Chidziwisano, Limbani Kalumbi, Vincent Doyle, Bagrey Ngwira
Abstract:
Introduction: The Malawi Government in partnership with Non-Governmental Organizations adopted Community Led Total Sanitation (CLTS) in 2008 as an approach in sanitation and hygiene promotion with an aim of declaring Malawi Open Defeacation Free (ODF) by 2015. While there is a significant body of research into CLTS available in public domain, there is little research done on challenges faced in implementing CLTS in Malawi. Methods: A cross-sectional qualitative study was carried out in three districts of Ntcheu, Balaka, and Phalombe. Data was collected using Focus Group Discussions (FGDs) and Key informant interviews (KII) and analysed manually. Results: In total, 96 people took part in FGDs and 9 people in KII. It was shown that choice of leaders after triggering was commonly done by chiefs, facilitators, and VHC without following CLTS principles as opposed to identifying individuals who showed leadership skills. Despite capacity building initiatives involving District Coordinating Teams, lack of resources to undertake follow-ups contributed to failure to sustain ODF in the community. It was also found that while most respondents appreciating the need for no subsidies, the elderly and those with disabilities felt the need for external support because do not have money for buying strong logs, slabs for durable toilet floor and also to hire people to build latrines for them. Conclusion: Effective implementation of CLTS requires comprehensive consideration of various issues that may affect its success.Keywords: open defecation, community-led, sanitation, faecal matter, hygiene, Malawi
Procedia PDF Downloads 3816565 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1916564 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1436563 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1296562 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection
Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane
Abstract:
Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.Keywords: massive open online course, MOOC, online learning, e-learning
Procedia PDF Downloads 2686561 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5496560 SARS-CoV-2 Transmission Risk Factors among Patients from a Metropolitan Community Health Center, Puerto Rico, July 2020 to March 2022
Authors: Juan C. Reyes, Linnette Rodríguez, Héctor Villanueva, Jorge Vázquez, Ivonne Rivera
Abstract:
On July 2020, a private non-profit community health center (HealthProMed) that serves people without a medical insurance plan or with limited resources in one of the most populated areas in San Juan, Puerto Rico, implemented a COVID-19 case investigation and contact-tracing surveillance system. Nursing personnel at the health center completed a computerized case investigation form that was translated, adapted, and modified from CDC’s Patient Under Investigation (PUI) Form. Between July 13, 2020, and March 17, 2022, a total of 9,233 SARS-CoV-2 tests were conducted at the health center, 16.9% of which were classified as confirmed cases (positive molecular test) and 27.7% as probable cases (positive serologic test). Most of the confirmed cases were females (60.0%), under 20 years old (29.1%), and living in their homes (59.1%). In the 14 days before the onset of symptoms, 26.3% of confirmed cases reported going to the supermarket, 22.4% had contact with a known COVID-19 case, and 20.7% went to work. The symptoms most commonly reported were sore throat (33.4%), runny nose (33.3%), cough (24.9%), and headache (23.2%). The most common preexisting medical conditions among confirmed cases were hypertension (19.3%), chronic lung disease including asthma, emphysema, COPD (13.3%), and diabetes mellitus (12.8). Multiple logistic regression analysis revealed that patients who used alcohol frequently during the last two weeks (OR=1.43; 95%CI: 1.15-1.77), those who were in contact with a positive case (OR=1.58; 95%CI: 1.33-1.88) and those who were obese (OR=1.82; 95%CI: 1.24-2.69) were significantly more likely to be a confirmed case after controlling for sociodemographic variables. Implementing a case investigation and contact-tracing component at community health centers can be of great value in the prevention and control of COVID-19 at the community level and could be used in future outbreaks.Keywords: community health center, Puerto Rico, risk factors, SARS-CoV-2
Procedia PDF Downloads 1166559 The Power of the Proper Orthogonal Decomposition Method
Authors: Charles Lee
Abstract:
The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios
Procedia PDF Downloads 846558 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid
Authors: Anindita Sen
Abstract:
Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid
Procedia PDF Downloads 616557 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1196556 Technology Maps in Energy Applications Based on Patent Trends: A Case Study
Authors: Juan David Sepulveda
Abstract:
This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: energy, technology mapping, patents, univariate analysis
Procedia PDF Downloads 4766555 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein
Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner
Abstract:
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.
Procedia PDF Downloads 706554 Assessment of Sustainability in the Wulo Abiye Watershed, Central Highlands of Ethiopia
Authors: Getabalew Derib, Arragaw Alemayehu
Abstract:
Assessing the sustainability of watersheds holds significant importance for regional natural resource management and to achieve sustainable development. This study investigated the sustainability of the Wulo Abiye watershed, central highlands of Ethiopia. The sustainability status of the watershed was evaluated by using 17 indicators representing the economic, social, and environmental dimensions of sustainable development goals (SDGs) based on the local and existing conditions of the watershed. The results indicated that environmental sustainability was at a ’ high’ level, while social and economic sustainability and the aggregate index were at ‘moderate’ levels. The overall level of community participation in the planning and evaluation phases of watershed management was at ’low’ levels. The implementation phase was at ’high’ level. Overall , the sustainability status of watershed management and level of community participation were at ‘moderate’ levels. The study concluded that integrated support is needed to overcome the identified challenges to achieve sustainable development in watersheds.Keywords: Wulo Abiye watershed, community participation, watershed management, sustainable development
Procedia PDF Downloads 466553 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 2316552 Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution
Authors: Nelvin Joseph, K. Krishna Milan Rao, Praveen Dwarakanath
Abstract:
The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world.Keywords: augmented reality, artificial neural networks, mobile application, human computer interaction, community engine
Procedia PDF Downloads 3326551 Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN
Authors: Sethu Lekshmi, Shahanas, Prettha P.
Abstract:
All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds.Keywords: 802.11, WLAN, capture effect, collision detection, collision resolution, receiver initiated
Procedia PDF Downloads 3606550 Motivators and Barriers to High-Tech Entrepreneurship in the Israeli-Arab Community
Authors: Vered Holzmann, Ramzi Halabi
Abstract:
The current research investigates motivators and barriers to high-tech entrepreneurship in the Israeli-Arab Community. With the aim to exploit the capacity of Israel as a 'start-up nation', we identify the most important aspects to promote integration of Israeli-Arab entrepreneurs in high-tech startups and business companies, thus impact the socio-economic status of the Arab community in Israel. We reviewed the literature on the role of high-tech and entrepreneurship in the Israeli economy, the profile of the Israeli-Arab community with regard to education and employability, and the characteristics of minority entrepreneurship to understand entrepreneurs' intentions, their incentives to choose the entrepreneurial route on one hand and the obstacles that they face on the other hand. Based on the literature review, we conducted an integrated study that included a survey among 73 Israeli-Arabs involved in high-tech entrepreneurship and 16 semi-structured interviews with Israeli-Arab and Jewish entrepreneurs and leaders in the high-tech industry. We analyzed the data to explore personal and social motivating factors to entrepreneurship as well as educational and socio-economical barriers for entrepreneurship. Three major elements were found to be the most influential on Arab high-tech entrepreneurship in Israel: education, financial resources, and strategic-institutional support. The relationship between education and employability that is well-known with regard to general education, requires two additional aspects in the field of high-tech entrepreneurship: education of technology and engineering, and education of business and entrepreneurship. The study findings reveal that the main motivation factors for entrepreneurship are development of creative ideas and improvement of the socio-economic status, while financial-related factors and lack of institutional and governmental support are perceived as impediments to entrepreneurial activities. Financing difficulties are mainly derived from discriminating financial environment and lack of professional networking. The relationship between entrepreneurship and economic growth seems to be clear and simple; thus it is a national interest to encourage entrepreneurship among the Arab community, and especially high-tech entrepreneurship which has a significant role in the economic growth of Israel.Keywords: high-tech industry, innovation management, Israeli-Arab community, minority entrepreneurship, motivating factors and barriers
Procedia PDF Downloads 2186549 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 5426548 Global Learning Supports Global Readiness with Projects with Purpose
Authors: Brian Bilich
Abstract:
A typical global learning program is a two-week project based, culturally immersive and academically relevant experience built around a project with purpose and catered to student and business groups. Global Learning in Continuing Education at Austin Community College promotes global readiness through projects with purpose with special attention given to balancing learning, hospitality and travel. A recent project involved CommunityFirst! Village; a 51-acre planned community which provides affordable, permanent housing for men and women coming out of chronic homelessness. Global Learning students collaborated with residents and staff at the Community First! Village on a project to produce two-dimensional remodeling plans of residents’ tiny homes with a focus on but not limited to design improvements on elements related to accessibility, increased usability of living and storage space and esthetic upgrades to boost psychological and emotional appeal. The goal of project-based learning in the context of global learning in Continuing Educaiton at Austin Community Collegen general is two fold. One, in rapid fashion we develop a project which gives the learner a hands-on opportunity to exercise soft and technical skills, like creativity and communication and analytical thinking. Two, by basing projects on global social conflict issues, the project of purpose promotes the development of empathy for other people and fosters a sense of corporate social responsibility in future generations of business leadership. In the example provide above the project informed the student group on the topic of chronic homelessness and promoted awareness and empathy for this underserved segment of the community. Project-based global learning based on projects with purpose has the potential to cultivate global readiness by developing empathy and strengthening emotional intelligence for future generations.Keywords: project-based learning, global learning, global readiness, globalization, international exchange, collaboration
Procedia PDF Downloads 646547 “Ethiopian Approach” to Combating Desertification: The Case of Semi-Arid Savanna Grasslands in Southern Ethiopia
Authors: Wang Yongdong, Yeneayehu Fenetahun, You Yuan, Ogbue Chukwuka, Yahaya Ibrahim, Xu Xinwen
Abstract:
This paper explores an innovative Ethiopian approach to combatting desertification, focusing on the semi-arid savanna grasslands in Southern Ethiopia. The study investigates the multifaceted strategies employed by Ethiopian communities, governmental bodies, and non-governmental organizations to address desertification challenges in the region. Through an analysis of legislative frameworks, community engagement, afforestation programs, and sustainable land management techniques, this research highlights the efficacy of Ethiopia's strategy in reducing the effects of desertification. The results emphasize how crucial it is to build effective measures for halting desertification in fragile ecosystems by utilizing local knowledge, community involvement, and adaptive governance. In addition, this study also addresses how the Ethiopian approach may be applied to other areas with comparable environmental problems. In summary, this research adds significant perspectives to the worldwide conversation about desertification and provides useful guidance for sustainable land use.Keywords: adaptive governance, community engagement, desertification, policy frameworks
Procedia PDF Downloads 446546 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 2376545 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 2066544 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)
Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi
Abstract:
Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS
Procedia PDF Downloads 4026543 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction
Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi
Abstract:
High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.Keywords: DOMS, sTnI, rapid detection test, ELISA
Procedia PDF Downloads 5136542 Urban Slum Communities Engage in the Fight Against TB in Karnataka, South India
Authors: N. Rambabu, H. Gururaj, Reynold Washington, Oommen George
Abstract:
Motivation: Under the USAID Strengthening Health Outcomes through Private Sector (SHOPS-TB) initiative, Karnataka Health Promotion Trust (KHPT) with technical support of Abt associates is implementing a TB prevention and care model in Karnataka State, South India. KHPT is the interface agency between the public and private sectors, and providers and the target community facilitating early TB case detection and enhancing treatment compliance through private health care providers (pHCP) engagement in RNTCP. The project coverage is 0.84 million urban poor from 663 slums in 12 districts of Karnataka. Problem Statement: India with the highest burden of global TB (26%) and two million cases annually, accounts for approximately one fifth of the global incidence. WHO estimates 300,000 people die from TB annually in India. India expanded the coverage of Directly Observed Treatment, Short-course chemotherapy (DOTS) to the entire country as early as 2006. However, the performance of RNTCP has not been uniform across states. While the national annual new smear-positive (NSP) case notification rate is 53, it is much lower at 47 in Karnataka. A third of TB patients in India reside in urban slums. Approach: Under SHOPS, KHPT actively engages with communities through key opinion leaders and community structures. Interpersonal communication, by Outreach workers through house-to-house visits and at aggregation points, is the primary method used for communication about TB and its management and to increase demand for sputum examination and DOTS. pHCP are mapped, trained and mentored by KHPT. ORWs also provide patient and family counseling on TB treatment, side effects and adherence, screen close contacts of index patients especially children under 6 years of age and screen co-morbidities including HIV, diabetes and malnutrition and risk factors including alcoholism, tobacco use, occupational hazards making appropriate accompanied or documented referrals. A treatment ‘buddy’ system for the patients involving close friends or family members, ICT-based support, DOTS Prerana (inspiration) groups of TB patients, family members and community, DOTS Mitra (friend) helpline services are also used for care and support services. Results: The intervention educated 39988 slum dwellers, referred 1731 chest symptomatics, tested 1061 patients and initiated 248 patients on anti-TB treatment within three months of intervention through continuous community engagement. Conclusions: The intervention’s potential to increase access to preferred health care providers, reduce patient and health system delays in diagnosis and initiation of treatment, improve health seeking behaviour and enhance compliance of pHCPs to standard treatment protocols is being monitored. Initial results are promising.Keywords: DOTS, KHPT, health outcomes, public and private sector
Procedia PDF Downloads 3166541 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects
Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne
Abstract:
Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency
Procedia PDF Downloads 78