Search results for: predicted mean vote
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1541

Search results for: predicted mean vote

311 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
310 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
309 Impact of Positive Psychology Education and Interventions on Well-Being: A Study of Students Engaged in Pastoral Care

Authors: Inna R. Edara, Haw-Lin Wu

Abstract:

Positive psychology investigates human strengths and virtues and promotes well-being. Relying on this assumption, positive interventions have been continuously designed to build pleasure and happiness, joy and contentment, engagement and meaning, hope and optimism, satisfaction and gratitude, spirituality, and various other positive measures of well-being. In line with this model of positive psychology and interventions, this study investigated certain measures of well-being in a group of 45 students enrolled in an 18-week positive psychology course and simultaneously engaged in service-oriented interventions that they chose for themselves based on the course content and individual interests. Students’ well-being was measured at the beginning and end of the course. The well-being indicators included positive automatic thoughts, optimism and hope, satisfaction with life, and spirituality. A paired-samples t-test conducted to evaluate the impact of class content and service-oriented interventions on students’ scores of well-being indicators indicated statistically significant increase from pre-class to post-class scores. There were also significant gender differences in post-course well-being scores, with females having higher levels of well-being than males. A two-way between groups analysis of variance indicated a significant interaction effect of age by gender on the post-course well-being scores, with females in the age group of 56-65 having the highest scores of well-being in comparison to the males in the same age group. Regression analyses indicated that positive automatic thought significantly predicted hope and satisfaction with life in the pre-course analysis. In the post-course regression analysis, spiritual transcendence made a significant contribution to optimism, and positive automatic thought made a significant contribution to both hope and satisfaction with life. Finally, a significant test between pre-course and post-course regression coefficients indicated that the regression coefficients at pre-course were significantly different from post-course coefficients, suggesting that the positive psychology course and the interventions were helpful in raising the levels of well-being. The overall results suggest a substantial increase in the participants’ well-being scores after engaging in the positive-oriented interventions, implying a need for designing more positive interventions in education to promote well-being.  

Keywords: hope, optimism, positive automatic thoughts, satisfaction with life, spirituality, well-being

Procedia PDF Downloads 217
308 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 427
307 The Role of Parental Stress and Emotion Regulation in Responding to Children’s Expression of Negative Emotion

Authors: Lizel Bertie, Kim Johnston

Abstract:

Parental emotion regulation plays a central role in the socialisation of emotion, especially when teaching young children to cope with negative emotions. Despite evidence which shows non-supportive parental responses to children’s expression of negative emotions has implications for the social and emotional development of the child, few studies have investigated risk factors which impact parental emotion socialisation processes. The current study aimed to explore the extent to which parental stress contributes to both difficulties in parental emotion regulation and non-supportive parental responses to children’s expression of negative emotions. In addition, the study examined whether parental use of expressive suppression as an emotion regulation strategy facilitates the influence of parental stress on non-supportive responses by testing the relations in a mediation model. A sample of 140 Australian adults, who identified as parents with children aged 5 to 10 years, completed an online questionnaire. The measures explored recent symptoms of depression, anxiety, and stress, the use of expressive suppression as an emotion regulation strategy, and hypothetical parental responses to scenarios related to children’s expression of negative emotions. A mediated regression indicated that parents who reported higher levels of stress also reported higher levels of expressive suppression as an emotion regulation strategy and increased use of non-supportive responses in relation to young children’s expression of negative emotions. These findings suggest that parents who experience heightened symptoms of stress are more likely to both suppress their emotions in parent-child interaction and engage in non-supportive responses. Furthermore, higher use of expressive suppression strongly predicted the use of non-supportive responses, despite the presence of parental stress. Contrary to expectation, no indirect effect of stress on non-supportive responses was observed via expressive suppression. The findings from the study suggest that parental stress may become a more salient manifestation of psychological distress in a sub-clinical population of parents while contributing to impaired parental responses. As such, the study offers support for targeting overarching factors such as difficulties in parental emotion regulation and stress management, not only as an intervention for parental psychological distress, but also the detection and prevention of maladaptive parenting practices.

Keywords: emotion regulation, emotion socialisation, expressive suppression, non-supportive responses, parental stress

Procedia PDF Downloads 160
306 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 499
305 Psycho-Social Predictors of Health-Related Quality of Life among Persons Living with Benign Prostatic Hyperplasia in Ibadan, Nigeria

Authors: A. C. Obosi, H. O. Osinowo, L. I. Okeke

Abstract:

Benign prostatic hyperplasia (BPH) is one among other prostate diseases with an increasing public health concern. The prevalence and increased psychological distress of BPH among men negatively impact on their health-related quality of life (HRQoL). Although several biomedical factors have been implicated in poor HRQoL among people with BPH, there is a dearth of research on the psychosocial factors predicting HRQoL among them especially in developing climes. This study, therefore, examined the psychosocial (knowledge, perceived stigma, depression, anxiety, perceived social support and illness acceptance) predictors of health-related quality of life among persons living with BPH in Ibadan, Nigeria. Biopsychosocial model and Health-related Quality of life guided this study which utilized ex-post facto design. Eighty-seven males living with BPH were purposively selected and actively participated in the study. Participants’ mean age was 61.77 ± 15.80 years. A standardized questionnaire comprising Socio-demographics and measures of health-related quality of life (α = 0.47); knowledge (α = 0.72); psychological distress (α = 0.95); perceived social support (α = 0.96) and Illness acceptance (α = 0.89) scales was utilized in the study. Data were content analysed, while bivariate correlation, hierarchical multiple regression and t-test for independent samples were computed at p < 0.05. Results revealed that 42.5% of the respondents reported poor HRQoL. Furthermore, age, length of illness, perceived stigma, depression, anxiety, knowledge, perceived social support and illness acceptance jointly predicted HRQoL significantly (R2=0.33, F(9,75)=4.05) and accounted for 33% variance in the total observed variance on HRQoL, while Illness acceptance (β=0.43), anxiety (β=-0.54), and perceived social support (β=0.16) had significant independent contributions to the observed variance on HRQoL. Illness acceptance, knowledge, perceived social support and psychological distress such as anxiety, depression and perceived stigma are important predictors of HRQoL. Therefore, it was recommended that urgent psychological intervention targeted at improving the quality of life of these persons be undertaken.

Keywords: benign prostatic hyperplasia, Health-related quality of life, prostate disorders, psychosocial factors

Procedia PDF Downloads 219
304 Revealing Single Crystal Quality by Insight Diffraction Imaging Technique

Authors: Thu Nhi Tran Caliste

Abstract:

X-ray Bragg diffraction imaging (“topography”)entered into practical use when Lang designed an “easy” technical setup to characterise the defects / distortions in the high perfection crystals produced for the microelectronics industry. The use of this technique extended to all kind of high quality crystals, and deposited layers, and a series of publications explained, starting from the dynamical theory of diffraction, the contrast of the images of the defects. A quantitative version of “monochromatic topography” known as“Rocking Curve Imaging” (RCI) was implemented, by using synchrotron light and taking advantage of the dramatic improvement of the 2D-detectors and computerised image processing. The rough data is constituted by a number (~300) of images recorded along the diffraction (“rocking”) curve. If the quality of the crystal is such that a one-to-onerelation between a pixel of the detector and a voxel within the crystal can be established (this approximation is very well fulfilled if the local mosaic spread of the voxel is < 1 mradian), a software we developped provides, from the each rocking curve recorded on each of the pixels of the detector, not only the “voxel” integrated intensity (the only data provided by the previous techniques) but also its “mosaic spread” (FWHM) and peak position. We will show, based on many examples, that this new data, never recorded before, open the field to a highly enhanced characterization of the crystal and deposited layers. These examples include the characterization of dislocations and twins occurring during silicon growth, various growth features in Al203, GaNand CdTe (where the diffraction displays the Borrmannanomalous absorption, which leads to a new type of images), and the characterisation of the defects within deposited layers, or their effect on the substrate. We could also observe (due to the very high sensitivity of the setup installed on BM05, which allows revealing these faint effects) that, when dealing with very perfect crystals, the Kato’s interference fringes predicted by dynamical theory are also associated with very small modifications of the local FWHM and peak position (of the order of the µradian). This rather unexpected (at least for us) result appears to be in keeping with preliminary dynamical theory calculations.

Keywords: rocking curve imaging, X-ray diffraction, defect, distortion

Procedia PDF Downloads 131
303 Characterization of Transmembrane Proteins with Five Alpha-Helical Regions

Authors: Misty Attwood, Helgi Schioth

Abstract:

Transmembrane proteins are important components in many essential cell processes such as signal transduction, cell-cell signalling, transport of solutes, structural adhesion activities, and protein trafficking. Due to their involvement in diverse critical activities, transmembrane proteins are implicated in different disease pathways and hence are the focus of intense interest in understanding functional activities, their pathogenesis in disease, and their potential as pharmaceutical targets. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. In this in silico bioinformatics analysis, we identify and comprehensively characterize the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). We classify nearly 60 5TM proteins in which 31 are members of ten families that contain two or more family members and all members are predicted to contain the 5TM architecture. Furthermore, nine singlet proteins that contain the 5TM architecture without paralogues detected in humans were also identifying, indicating the evolution of single unique proteins with the 5TM structure. Interestingly, more than half of these proteins function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this family in sharp contrast with other TM families. Three major 5TM families were identified and include the Tweety family, which are pore-forming subunits of the swelling-dependent volume regulated anion channel in astrocytes; the sidoreflexin family that acts as mitochondrial amino acid transporters; and the Yip1 domain family engaged in vesicle budding and intra-Golgi transport. About 30% of the proteins have enhanced expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumour types, indicating further investigation into the function and expression of these proteins is important. This study provides the first comprehensive analysis of proteins with 5TM regions and provides details of the unique characteristics and application in pharmaceutical development.

Keywords: 5TM, cancer prognostic marker, drug targets, transmembrane protein

Procedia PDF Downloads 109
302 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri

Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy

Abstract:

Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.

Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin

Procedia PDF Downloads 51
301 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 220
300 Identification of Potential Small Molecule Inhibitors Against β-hCG for Cancer Therapy: An In-Silico Study

Authors: Shreya Sara Ittycheria, K. C. Sivakumar, Shijulal Nelson Sathi, Priya Srinivas

Abstract:

hCG, a heterodimer composed of α and β subunits, is a peptide hormone having numerous biological functions. Although hCG is expressed by placenta during pregnancy, ectopic β-hCG secretion is observed in many non-trophoblastic tumors including that of breast. In-vitro and in-vivo studies done in the lab, have proved that BRCA1 defective cancers express β-hCG and when β-hCG is expressed or supplemented, it promotes tumor progression and exhibits resistance to carboplatin and ABT888, in such cancers but not in BRCA1 wild type cancers. In cancer cells, instead of binding to its regular receptor, LH-CGR, β-hCG binds with Transforming Growth Factor Receptor 2 (TGFβRII) and phosphorylates it resulting in faster tumor progression through the Smad signaling pathway. Targeting β-hCG could be a potential therapeutic strategy for managing BRCA1 defective cancers. Here, molecular docking and dynamic simulation studies were done to identify potential small molecule inhibitors against β-hCG as there are currently no such inhibitors reported. The binding sites of TGFβRII on β-hCG were identified from the top 10 predicted complexes from Z Dock. Virtual screening of selected commercially available small molecules from various libraries such as ZINC, NCI and Life Chemicals amounting to a total of 50,025 molecules were done. Four potential small molecule inhibitors were identified, RgcbPs-1, RgcbPs-2, RgcbPs-3 and RgcbPs-4 with binding affinities -60.778 kcal/mol, -45.447 kcal/mol, -65.2268 kcal/mol and -82.040 kcal/mol respectively. Further, 100ns Molecular Dynamics (MD) simulation showed that these molecules form stable complexes with β-hCG. RgcbPs-1 maintains hydrogen bonds with Q54, L52, Q46, C100, G36, C57, C38 residues, RgcbPs-2 maintains hydrogen bonds with A83 residue, RgcbPs-3 maintains hydrogen bonds with C57, Y58, R94, G101 residues and RgcbPs-4 maintains hydrogen bonds with G36, C38, T40, C57, D99, C100, G101 and L104 residues of β-hCG all of which coincide with the TGFβRII binding site on β-hCG. These results show that these two inhibitors could be used either singly or in combination for inhibiting β-hCG from binding to TGFβRII and thereby directly inhibiting the tumorigenesis pathway.

Keywords: β-hCG, breast cancer, dynamic simulations, molecular docking, small molecule inhibitors, virtual screening.

Procedia PDF Downloads 106
299 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.

Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus

Procedia PDF Downloads 219
298 Study and Simulation of a Sever Dust Storm over West and South West of Iran

Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi

Abstract:

In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.

Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem

Procedia PDF Downloads 270
297 Lung Function, Urinary Heavy Metals And ITS Other Influencing Factors Among Community In Klang Valley

Authors: Ammar Amsyar Abdul Haddi, Mohd Hasni Jaafar

Abstract:

Heavy metals are elements naturally presented in the environment that can cause adverse effect to health. But not much literature was found on effects toward lung function, where impairment of lung function may lead to various lung diseases. The objective of the study is to explore the lung function impairment, urinary heavy metal level, and its associated factors among the community in Klang valley, Malaysia. Sampling was done in Kuala Lumpur suburb public and housing areas during community events throughout March 2019 till October 2019. respondents who gave the consent were given a questionnaire to answer and was proceeded with a lung function test. Urine samples were obtained at the end of the session and sent for Inductively coupled plasma mass spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. A total of 200 samples were analysed, and of all, 52% of respondents were male, Age ranging from 18 years old to 74 years old with a mean age of 38.44. Urinary samples show that 12% of the respondent (n=22) has Cd level above than average, and 1.5 % of the respondent (n=3) has urinary Pb at an above normal level. Bivariate analysis show that there was a positive correlation between urinary Cd and urinary Pb (r= 0.309; p<0.001). Furthermore, there was a negative correlation between urinary Cd level and full vital capacity (FVC) (r=-0.202, p=0.004), Force expiratory volume at 1 second (FEV1) (r = -0.225, p=0.001), and also with Force expiratory flow between 25-75% FVC (FEF25%-75%) (r= -0.187, p=0.008). however, urinary Pb did not show any association with FVC, FEV1, FEV1/FVC, or FEF25%-75%. Multiple linear regression analysis shows that urinary Cd remained significant and negatively affect FVC% (p=0.025) and FEV1% (p=0.004) achieved from the predicted value. On top of that, other factors such as education level (p=0.013) and duration of smoking(p=0.003) may influencing both urinary Cd and performance in lung function as well, suggesting Cd as a potential mediating factor between smoking and impairment of lung function. however, there was no interaction detected between heavy metal or other influencing factor in this study. In short, there is a negative linear relationship detected between urinary Cd and lung function, and urinary Cd is likely to affects lung function in a restrictive pattern. Since smoking is also an influencing factor for urinary Cd and lung function impairment, it is highly suggested that smokers should be screened for lung function and urinary Cd level in the future for early disease prevention.

Keywords: lung function, heavy metals, community

Procedia PDF Downloads 155
296 Computational Approach to Cyclin-Dependent Kinase 2 Inhibitors Design and Analysis: Merging Quantitative Structure-Activity Relationship, Absorption, Distribution, Metabolism, Excretion, and Toxicity, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mohamed Moussaoui, Mouna Baassi, Soukayna Baammi, Hatim Soufi, Mohammed Salah, Rachid Daoud, Achraf EL Allali, Mohammed Elalaoui Belghiti, Said Belaaouad

Abstract:

The present study aims to investigate the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the density functional theory (DFT) method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R²= 0.725, R²ₐ𝒹ⱼ= 0.653, MSE = 0.060, R²ₜₑₛₜ= 0.827, Q²𝒸ᵥ = 0.536). The energy of the highest occupied molecular orbital (EHOMO) orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Additional Thiazole derivatives were then designed and their activities and pharmacokinetic properties were predicted using the validated QSAR model. These designed molecules underwent evaluation through molecular docking (MD) and molecular dynamic (MD) simulations, with binding affinity calculated using the MMPBSA script according to a 100 ns simulation trajectory. This process aimed to study both their affinity and stability towards Cyclin-Dependent Kinase 2 (CDK2), a target protein for cancer disease treatment. The research concluded by identifying four CDK2 inhibitors - A1, A3, A5, and A6 - displaying satisfactory pharmacokinetic properties. MDs results indicated that the designed compound A5 remained stable in the active center of the CDK2 protein, suggesting its potential as an effective inhibitor for the treatment of hepatocellular carcinoma. The findings of this study could contribute significantly to the development of effective CDK2 inhibitors.

Keywords: QSAR, ADMET, Thiazole, anticancer, molecular docking, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 107
295 Sports and Exercise Medicine: A Public Health Tool in Combating and Preventing the Side Effects of a Sedentary Lifestyle

Authors: Shireen Ibish

Abstract:

Physical inactivity and unhealthy diets have contributed to a global burden of disease with increased relation to non-communicable diseases, increased risk of colon and breast cancer, high prevalence of depression, reduced quality of life and early death. The World Health Organisation’s facts on Obesity show a tripling in prevalence across the European Region since the 1980s. This has lead to a huge public health burden, being responsible for and 10-13% of deaths (fourth largest cause of global mortality) and 2-8% of health costs in the Region. In the UK alone, the present cost of physical inactivity has been estimated to be £8.2 billion. In 2002 a paper published in the International Journal of Epidemiology on ‘sedentary’ lifestyle, put into figures the increasingly worrying statistics across European countries. “Percentages of sedentary lifestyles across European countries ranged between 43.3% (Sweden) and 87.8% (Portugal)”. This was especially so amongst obese subjects, less- educated people, and smokers. While in the UK’s “50% of adult population in the UK is predicted to be obese by 2050.” Sports and Exercise Medicine, as a specialty, has a lot to offer in targeting this globally increasing epidemic. The worrying figures and the increasing knowledge of combating and preventing this issue have lead to increased awareness amongst the medical profession and more targeted interventions to reduce the burden of disease. “The public health element of the specialty is critical – this is not simply a specialty for the management of elite athletes’ medical conditions – it is central to the promotion of exercise as a means of disease prevention, to enhance well-being and in the management of disease.” WHO advised on creating National policies, encouraging and providing opportunities for greater physical activity, and improve the affordability, availability and accessibility of healthy foods. In the UK various different movements have been established to target this problem. The Motivate2Move, Move Eat Treat and guidelines advising specialties on targeting and encouraging exercise in the population (Sport and Exercise Medicine A Fresh Approach).

Keywords: sedentary lifestyle, obesity, public health burden, medicine

Procedia PDF Downloads 566
294 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
293 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 97
292 Integrating Dynamic Brain Connectivity and Transcriptomic Imaging in Major Depressive Disorder

Authors: Qingjin Liu, Jinpeng Niu, Kangjia Chen, Jiao Li, Huafu Chen, Wei Liao

Abstract:

Functional connectomics is essential in cognitive science and neuropsychiatry, offering insights into the brain's complex network structures and dynamic interactions. Although neuroimaging has uncovered functional connectivity issues in Major Depressive Disorder (MDD) patients, the dynamic shifts in connectome topology and their link to gene expression are yet to be fully understood. To explore the differences in dynamic connectome topology between MDD patients and healthy individuals, we conducted an extensive analysis of resting-state functional magnetic resonance imaging (fMRI) data from 434 participants (226 MDD patients and 208 controls). We used multilayer network models to evaluate brain module dynamics and examined the association between whole-brain gene expression and dynamic module variability in MDD using publicly available transcriptomic data. Our findings revealed that compared to healthy individuals, MDD patients showed lower global mean values and higher standard deviations, indicating unstable patterns and increased regional differentiation. Notably, MDD patients exhibited more frequent module switching, primarily within the executive control network (ECN), particularly in the left dorsolateral prefrontal cortex and right fronto-insular regions, whereas the default mode network (DMN), including the superior frontal gyrus, temporal lobe, and right medial prefrontal cortex, displayed lower variability. These brain dynamics predicted the severity of depressive symptoms. Analyzing human brain gene expression data, we found that the spatial distribution of MDD-related gene expression correlated with dynamic module differences. Cell type-specific gene analyses identified oligodendrocytes (OPCs) as major contributors to the transcriptional relationships underlying module variability in MDD. To the best of our knowledge, this is the first comprehensive description of altered brain module dynamics in MDD patients linked to depressive symptom severity and changes in whole-brain gene expression profiles.

Keywords: major depressive disorder, module dynamics, magnetic resonance imaging, transcriptomic

Procedia PDF Downloads 25
291 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell

Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko

Abstract:

The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.

Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent

Procedia PDF Downloads 65
290 Acoustic Characteristics of Ultrasonic Vocalizations in Rat Pups Prenatally Exposed to Ethanol

Authors: Mohd. Ashik Shahrier, Hiromi Wada

Abstract:

Prenatal ethanol exposure has potential to induce difficulties in the social behavior of rats and can alter pup-dam communication suggesting that deficits in pups could result in altered dam behavior, which in turn could result in more aberrant behavior in the pup. Ultrasonic vocalization (USV) is a sensitive tool for investigating social behavior between rat pups and their dam. Rat pups produce USVs on separation from their dam. This signals the dam to locate her pups and retrieve them back to the nest. In this study, it was predicted that prenatal ethanol exposure cause alterations on the acoustic characteristics of USVs in rat pups. Thirteen pregnant rats were purchased and randomly assigned into three groups: high-ethanol (n = 4), low-ethanol (n = 5), and control (n = 4) groups. Laboratory ethanol (purity = 99.5%) was dissolved in tap water and administered to the high- and low-ethanol groups as drinking water from gestational days (GD) 8-20. Ethanol-containing water was administered to the animals in three stages by gradually increasing the concentration between GDs 8–20. From GDs 8–10, 10% and 5%, from GDs 11–13, 20% and 10%, and from GDs 14–20, 30% and 15% ethanol-containing water (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without ethanol was given to the control group throughout the experiment. The day of birth of the pups was designated as postnatal day (PND) 0. On PND 4, each litter was culled to four male and four female pups. For the present study, two male and two female pups were randomly sampled from each litter as subjects. Thus, eight male and eight female pups from the high-ethanol and control groups and another 10 male and 10 female pups from the low-ethanol group, were sampled. An ultrasonic microphone and the Sonotrack system version 2.4.0 (Metris, Hoofddorp, The Netherlands) were used to record and analyze USVs of the pups. On postnatal days 4, 8, 12 and 16, the resultant pups were individually isolated from their dams and littermates, and USVs were recorded for 5 min in a sound-proof box. Pups in the high-ethanol group produced greater number of USVs compared with that in both low-ethanol and control groups on PND 12. Rat pups in the high-ethanol group also produced higher mean, minimum, and maximum fundamental frequencies of USVs compared with that in both low-ethanol and control groups. Male pups in the high-ethanol group had higher USV amplitudes than in those in low-ethanol and control groups on PND 12. These results suggest that pups in the high-ethanol group relatively experienced more negative emotionality due to the ethanol-induced neuronal activation in the core limbic system and tegmental structures and accordingly, produced altered USVs as distress calls.

Keywords: emotionality, ethanol, maternal separation, ultrasonic vocalization

Procedia PDF Downloads 131
289 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process

Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria

Abstract:

Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.

Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms

Procedia PDF Downloads 107
288 Q Slope Rock Mass Classification and Slope Stability Assessment Methodology Application in Steep Interbedded Sedimentary Rock Slopes for a Motorway Constructed North of Auckland, New Zealand

Authors: Azariah Sosa, Carlos Renedo Sanchez

Abstract:

The development of a new motorway north of Auckland (New Zealand) includes steep rock cuts, from 63 up to 85 degrees, in an interbedded sandstone and siltstone rock mass of the geological unit Waitemata Group (Pakiri Formation), which shows sub-horizontal bedding planes, various sub-vertical joint sets, and a diverse weathering profile. In this kind of rock mass -that can be classified as a weak rock- the definition of the stable maximum geometry is not only governed by discontinuities and defects evident in the rock but is important to also consider the global stability of the rock slope, including (in the analysis) the rock mass characterisation, influence of the groundwater, the geological evolution, and the weathering processes. Depending on the weakness of the rock and the processes suffered, the global stability could, in fact, be a more restricting element than the potential instability of individual blocks through discontinuities. This paper discusses those elements that govern the stability of the rock slopes constructed in a rock formation with favourable bedding and distribution of discontinuities (horizontal and vertical) but with a weak behaviour in terms of global rock mass characterisation. In this context, classifications as Q-Slope and slope stability assessment methodology (SSAM) have been demonstrated as important tools which complement the assessment of the global stability together with the analytical tools related to the wedge-type failures and limit equilibrium methods. The paper focuses on the applicability of these two new empirical classifications to evaluate the slope stability in 18 already excavated rock slopes in the Pakiri formation through comparison between the predicted and observed stability issues and by reviewing the outcome of analytical methods (Rocscience slope stability software suite) compared against the expected stability determined from these rock classifications. This exercise will help validate such findings and correlations arising from the two empirical methods in order to adjust the methods to the nature of this specific kind of rock mass and provide a better understanding of the long-term stability of the slopes studied.

Keywords: Pakiri formation, Q-slope, rock slope stability, SSAM, weak rock

Procedia PDF Downloads 208
287 Self-rated Health as a Predictor of Hospitalizations in Patients with Bipolar Disorder and Major Depression: A Prospective Cohort Study of the United Kingdom Biobank

Authors: Haoyu Zhao, Qianshu Ma, Min Xie, Yunqi Huang, Yunjia Liu, Huan Song, Hongsheng Gui, Mingli Li, Qiang Wang

Abstract:

Rationale: Bipolar disorder (BD) and major depressive disorder (MDD), as severe chronic illnesses that restrict patients’ psychosocial functioning and reduce their quality of life, are both categorized into mood disorders. Emerging evidence has suggested that the reliability of self-rated health (SRH) was wellvalidated and that the risk of various health outcomes, including mortality and health care costs, could be predicted by SRH. Compared with other lengthy multi-item patient-reported outcomes (PRO) measures, SRH was proven to have a comparable predictive ability to predict mortality and healthcare utilization. However, to our knowledge, no study has been conducted to assess the association between SRH and hospitalization among people with mental disorders. Therefore, our study aims to determine the association between SRH and subsequent all-cause hospitalizations in patients with BD and MDD. Methods: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. Results: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02% were female, and 3,029 (10.11%), 15,972 (53.30%), 8,313 (27.74%), and 2,652 (8.85%) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19% had a hospitalization event within 2 years compared with 22.65% for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95% CI 1.21-1.42), 1.82 (95% CI 1.68-1.98), and 2.45 (95% CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. Conclusion: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study facilitates rapid interpretation of SRH values and underscores the need for proactive SRH screening in this population, which might inform resource allocation and enhance high-risk population detection.

Keywords: severe mental illnesses, hospitalization, risk prediction, patient-reported outcomes

Procedia PDF Downloads 160
286 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 202
285 Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling

Authors: Faiz Khan Mohammad, Saumya Ray Chaudhari, Raghunathan Rengaswamy, Swagatika Sahoo

Abstract:

Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics.

Keywords: cholera, vibrio cholera El. tor, vibrio cholera classical, acetate

Procedia PDF Downloads 162
284 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 75
283 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions

Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock

Abstract:

Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.

Keywords: decision support system, event-sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine

Procedia PDF Downloads 127
282 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital

Authors: Li-Ching Lin, Yu-Tzu Dai

Abstract:

Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.

Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice

Procedia PDF Downloads 196