Search results for: intuitionistic fuzzy regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3908

Search results for: intuitionistic fuzzy regression

2678 Driving Forces of Bank Liquidity: Evidence from Selected Ethiopian Private Commercial Banks

Authors: Tadele Tesfay Teame, Tsegaye Abrehame, Hágen István Zsombor

Abstract:

Liquidity is one of the main concerns for banks, and thus achieving the optimum level of liquidity is critical. The main objective of this study is to discover the driving force of selected private commercial banks’ liquidity. In order to achieve the objective explanatory research design and quantitative research approach were used. Data has been collected from a secondary source of the sampled Ethiopian private commercial banks’ financial statements, the National Bank of Ethiopia, and the Minister of Finance, the sample covering the period from 2011 to 2022. Bank-specific and macroeconomic variables were analyzed by using the balanced panel fixed effect regression model. Bank’s liquidity ratio is measured by the total liquid asset to total deposits. The findings of the study revealed that bank size, capital adequacy, loan growth rate, and non-performing loan had a statistically significant impact on private commercial banks’ liquidity, and annual inflation rate and interest rate margin had a statistically significant impact on the liquidity of Ethiopian private commercial banks measured by L1 (bank liquidity). Thus, banks in Ethiopia should not only be concerned about internal structures and policies/procedures, but they must consider both the internal environment and the macroeconomic environment together in developing their strategies to efficiently manage their liquidity position and private commercial banks to maintain their financial proficiency shall have bank liquidity management policy by assimilating both bank-specific and macro-economic variables.

Keywords: liquidity, Ethiopian private commercial banks, liquidity ratio, panel data regression analysis

Procedia PDF Downloads 100
2677 Survival Analysis of Identifying the Risk Factors of Affecting the First Recurrence Time of Breast Cancer: The Case of Tigray, Ethiopia

Authors: Segen Asayehegn

Abstract:

Introduction: In Tigray, Ethiopia, next to cervical cancer, breast cancer is one of the most common cancer health problems for women. Objectives: This article is proposed to identify the prospective and potential risk factors affecting the time-to-first-recurrence of breast cancer patients in Tigray, Ethiopia. Methods: The data were taken from the patient’s medical record that registered from January 2010 to January 2020. The study considered a sample size of 1842 breast cancer patients. Powerful non-parametric and parametric shared frailty survival regression models (FSRM) were applied, and model comparisons were performed. Results: Out of 1842 breast cancer patients, about 1290 (70.02%) recovered/cured the disease. The median cure time from breast cancer is found at 12.8 months. The model comparison suggested that the lognormal parametric shared a frailty survival regression model predicted that treatment, stage of breast cancer, smoking habit, and marital status significantly affects the first recurrence of breast cancer. Conclusion: Factors like treatment, stages of cancer, and marital status were improved while smoking habits worsened the time to cure breast cancer. Recommendation: Thus, the authors recommend reducing breast cancer health problems, the regional health sector facilities need to be improved. More importantly, concerned bodies and medical doctors should emphasize the identified factors during treatment. Furthermore, general awareness programs should be given to the community on the identified factors.

Keywords: acceleration factor, breast cancer, Ethiopia, shared frailty survival models, Tigray

Procedia PDF Downloads 135
2676 The Impact of Socio-Economic and Type of Religion on the Behavior of Obedience among Arab-Israeli Teenagers

Authors: Sadhana Ghnayem

Abstract:

This article examines the relationship between several socio-economic and background variables of Arab-Israeli families and their effect on the conflict management style of forcing, where teenage children are expected to obey their parents without questioning. The article explores the inter-generational gap and the desire of Arab-Israeli parents to force their teenage children to obey without questioning. The independent variables include: the sex of the parent, religion (Christian or Muslim), income of the parent, years of education of the parent, and the sex of the teenage child. We use the dependent variable of “Obedience Without Questioning” that is reported twice: by each of the parents as well as by the children. We circulated a questionnaire and collected data from a sample of 180 parents and their adolescent child living in the Galilee area during 2018. In this questionnaire we asked each of the parent and his/her teenage child about whether the latter is expected to follow the instructions of the former without questioning. The outcome of this article indicates, first, that Christian-Arab families are less authoritarian than Muslims families in demanding sheer obedience from their children. Second, female parents indicate more than male parents that their teenage child indeed obeys without questioning. Third, there is a negative correlation between the variable “Income” and “Obedience without Questioning.” Yet, the regression coefficient of this variable is close zero. Fourth, there is a positive correlation between years of education and obedience reported by the children. In other words, more educated parents are more likely to demand obedience from their children.  Finally, after running the regression, the study also found that the impact of the variables of religion as well as the sex of the child on the dependent variable of obedience is also significant at above 95 and 90%, respectively.

Keywords: conflict, religion, conflict management style, obedience

Procedia PDF Downloads 169
2675 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
2674 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms

Authors: Atia Alam

Abstract:

Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.

Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms

Procedia PDF Downloads 357
2673 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market

Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad

Abstract:

Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.

Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy

Procedia PDF Downloads 540
2672 Effective Factors on Farmers' Attitude toward Multifunctional Agriculture

Authors: Mohammad Sadegh Allahyari, Sorush Marzban

Abstract:

The main aim of this study was to investigate the factors affecting farmers' attitude of the Shanderman District in Masal (Guilan Province in the north of Iran), towards the concepts of multifunctional agriculture. The statistical population consisted of all 4908 in Shanderman.The sample of the present study consisted of 209 subjects who were selected from the total population using the Bartlett et al. Table. Questionnaire as the main tool of data collection was divided in two parts. The first part of questionnaire consisted of farmers' profiles regarding individual, technical-agronomic, economic and social characteristics. The second part included items to identify the farmers’ attitudes regarding different aspects of multifunctional agriculture. The validity of the questionnaire was assessed by professors and experts. Cronbach's alpha was used to determine the reliability (α= 0.844), which is considered an acceptable reliability value. Overall, the average scores of attitudes towards multifunctional agriculture show a positive tendency towards multifunctional agriculture, considering farmers' attitudes of the Shanderman district (SD = 0.53, M = 3.81). Results also highlight a significant difference between farmers' income source levels (F = 0.049) and agricultural literature review (F = 0.022) toward farmers' attitudes considering multifunctional agriculture (p < 0.05). Pearson correlations also indicated that there is a positive relationship between positive attitudes and family size (r = 0.154), farmers' experience (r = 0.246), size of land under cultivation (r = 0.186), income (r = 0.227), and social contribution activities (r = 0.224). The results of multiple regression analyses showed that the variation in the dependent variable depended on the farmers' experience in agricultural activities and their social contribution activities. This means that the variables included in the regression analysis are estimated to explain 12 percent of the variation in the dependent variable.

Keywords: multifunctional agriculture, attitude, effective factor, sustainable agriculture

Procedia PDF Downloads 236
2671 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
2670 Assessment of the Work-Related Stress and Associated Factors among Sanitation Workers in Public Hospitals during COVID-19, Addis Ababa, Ethiopia

Authors: Zerubabel Mihret

Abstract:

Background: Work-related stress is a pattern of reactions to work demands unmatched by worker’s knowledge, skills, or abilities. Healthcare institutions are considered high-risk and intensive work areas for work-related stress. However, there is the nonexistence of clear and strong data about the magnitude of work-related stress on sanitation workers in hospitals in Ethiopia. The aim of this study was to determine the magnitude of work-related stress among sanitation workers in public hospitals during COVID-19 in Addis Ababa, Ethiopia. Methods: Institution-based cross-sectional study was conducted from October 2021 to February 2022 among 494 sanitation workers who were selected from 4 hospitals. HSE (Health and Safety Executive of UK) standard data collection tool was used, and an interviewer-administered questionnaire was used to collect the data using KOBO collect application. The collected data were cleaned and analyzed using SPSS version 20.0. Both binary and multivariable logistic regression analyses were done to identify important factors having an association with work-related stress. Variables with p-value ≤ 0.25 in the bivariate analysis were entered into the multivariable logistic regression model. A statistically significant level was declared at a p-value ≤ 0.05. Results: This study revealed that the magnitude of work-related stress among sanitation workers was 49.2% (95% CI 45-54). Significant proportions (72.7%) of sanitation workers were dissatisfied with their current job. Sex, age, experience, and chewing khat were significantly associated with work-related stress. Conclusion: Work-related stress is significantly high among sanitation workers. Sex, age, experience, and chewing khat were identified as factors associated with work-related stress. Intervention program focusing on the prevention and control of stress is desired by hospitals.

Keywords: work-related stress, sanitation workers, Likert scale, public hospitals, Ethiopia

Procedia PDF Downloads 83
2669 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China

Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang

Abstract:

Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.

Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle

Procedia PDF Downloads 282
2668 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment

Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann

Abstract:

For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.

Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine

Procedia PDF Downloads 110
2667 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana

Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.

Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect

Procedia PDF Downloads 426
2666 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
2665 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 243
2664 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India

Authors: Palash Bandyopadhyay

Abstract:

Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.

Keywords: financial performance, crude oil and natural gas companies, India, linear regression

Procedia PDF Downloads 322
2663 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.

Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange

Procedia PDF Downloads 73
2662 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
2661 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 154
2660 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
2659 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore

Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan

Abstract:

Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.

Keywords: ethnicity, gestational diabetes, healthcare, pregnancy

Procedia PDF Downloads 226
2658 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 396
2657 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification

Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg

Abstract:

The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.

Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort

Procedia PDF Downloads 191
2656 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 300
2655 Conditions That Brought Bounce-Back in Southern Europe: An Inter-Temporal and Cross-National Analysis on Female Labour Force Participation with Fuzzy Set Qualitative Comparative Analysis

Authors: A. Onur Kutlu, H. Tolga Bolukbasi

Abstract:

Since the 1990s, governments, international organizations and scholars have drawn increasing attention to the significance of women in the labour force. While advanced industrial countries in North Western Europe and North America have managed to increase female labour force participation (FLFP) in the early post world war two period, emerging economies of the 1970s have only been able to increase FLFP only a decade later. Among these areas, Southern Europe features a wave of remarkable bounce backs in FLFP. However, despite striking similarities between the features in Southern Europe and those in Turkey, Turkey has not been able to pull women into the labour force. Despite a host of institutional similarities, Turkey has failed to reach to the level of her Southern European neighbours. This paper addresses the puzzle why Turkey lag behind in FLFP in comparison to her Southern European neighbours. There are signs showing that FLFP is currently reaching a critical threshold at a time when structural factors may allow a trend. It is not known, however, the constellation of conditions which may bring rising FLFP in Turkey. In order to gain analytical leverage from similar transitions in countries that share similar labour market and welfare state regime characteristics, this paper identifies the conditions in Southern Europe that brought rising FLFP to be able to explore the prospects for Turkey. Second, this paper takes these variables in the fuzzy set Qualitative Comparative Analysis (fsQCA) as conditions which can potentially explain the outcome of rising FLFP in Portugal, Spain, Italy, Greece and Turkey. The purpose here is to identify any causal pathway there may exist that lead to rising FLFP in Southern Europe. In order to do so, this study analyses two time periods in all cases, which represent different periods for different countries. The first period is identified on the basis of low FLFP and the second period on the basis of the transition to significantly higher FLFP. Third, the conditions are treated following the standard procedures in fsQCA, which provide equifinal: two distinct paths to higher levels of FLFP in Southern Europe, each of which may potentially increase FLFP in Turkey. Based on this analysis, this paper proposes that there exist two distinct paths leading to higher levels of FLFP in Southern Europe. Among these paths, salience of left parties emerges as a sufficient condition. In cases where this condition was not present, a second path combining enlarging service sector employment, increased tertiary education among women and increased childcare enrolment rates led to increasing FLFP.

Keywords: female labour force participation, fsQCA, Southern Europe, Turkey

Procedia PDF Downloads 326
2654 Information Communication Technology (ICT) Using Management in Nursing College under the Praboromarajchanok Institute

Authors: Suphaphon Udomluck, Pannathorn Chachvarat

Abstract:

Information Communication Technology (ICT) using management is essential for effective decision making in organization. The Concerns Based Adoption Model (CBAM) was employed as the conceptual framework. The purposes of the study were to assess the situation of Information Communication Technology (ICT) using management in College of Nursing under the Praboromarajchanok Institute. The samples were multi – stage sampling of 10 colleges of nursing that participated include directors, vice directors, head of learning groups, teachers, system administrator and responsible for ICT. The total participants were 280; the instrument used were questionnaires that include 4 parts, general information, Information Communication Technology (ICT) using management, the Stage of concern Questionnaires (SoC), and the Levels of Use (LoU) ICT Questionnaires respectively. Reliability coefficients were tested; alpha coefficients were 0.967for Information Communication Technology (ICT) using management, 0.884 for SoC and 0.945 for LoU. The data were analyzed by frequency, percentage, mean, standard deviation, Pearson Product Moment Correlation and Multiple Regression. They were founded as follows: The high level overall score of Information Communication Technology (ICT) using management and issue were administration, hardware, software, and people. The overall score of the Stage of concern (SoC)ICTis at high level and the overall score of the Levels of Use (LoU) ICTis at moderate. The Information Communication Technology (ICT) using management had the positive relationship with the Stage of concern (SoC)ICTand the Levels of Use (LoU) ICT(p < .01). The results of Multiple Regression revealed that administration hardwear, software and people ware could predict SoC of ICT (18.5%) and LoU of ICT (20.8%).The factors that were significantly influenced by SoCs were people ware. The factors that were significantly influenced by LoU of ICT were administration hardware and people ware.

Keywords: information communication technology (ICT), management, the concerns-based adoption model (CBAM), stage of concern(SoC), the levels of use(LoU)

Procedia PDF Downloads 318
2653 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
2652 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand

Authors: Hamed Saremi

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: anfis, dematel, brand, cosmetic product, brand value

Procedia PDF Downloads 410
2651 Cooperative Learning Mechanism in Intelligent Multi-Agent System

Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour

Abstract:

In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning

Procedia PDF Downloads 685
2650 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 412
2649 The Influence of Emotional Intelligence Skills on Innovative Start-Ups Coaching: A Neuro-Management Approach

Authors: Alina Parincu, Giuseppe Empoli, Alexandru Capatina

Abstract:

The purpose of this paper is to identify the most influential predictors of emotional intelligence skills, in the case of 20 business innovation coaches, on the co-creation of knowledge through coaching services delivered to innovative start-ups from Europe, funded through Horizon 2020 – SME Instrument. We considered the emotional intelligence skills (self-awareness, self-regulation, motivation, empathy and social skills) as antecedent conditions of the outcome: the quality of coaching services, perceived by the entrepreneurs who received funding within SME instrument, using fuzzy-sets qualitative comparative analysis (fsQCA) approach. The findings reveal that emotional intelligence skills, trained with neuro-management techniques, were associated with increased goal-focused business coaching skills.

Keywords: neuro-management, innovative start-ups, business coaching, fsQCA

Procedia PDF Downloads 175