Search results for: future challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12190

Search results for: future challenges

10960 Visualizing the Future of New York’s Southern Tier: Engaging Students to Help Create Sustainable Communities

Authors: William C. Dean

Abstract:

In the pedagogical sequence of the four- and five-year architectural programs at Alfred State, the fourth-year Urban Design Studio constitutes the first course where students directly explore design issues in the urban context. It is the first large-scale, community-based service learning project for most of the participating students. The students learn key lessons that include the benefits of working both individually and in groups of different sizes toward a common goal, accepting - and responding creatively too - criticism from stakeholders at different points in the project, and recognizing the role that local politics and activism can play in planning for community development. Above all, students are exposed to the importance of good planning in relation to preservation and community revitalization. The purpose of this paper is to discuss the use of community-based service-learning projects in undergraduate architectural education to promote student civic engagement as a means of helping communities visualize potential solutions for revitalizing their neighborhoods and business districts. A series of case studies will be presented in terms of challenges that were encountered, opportunities for student engagement and leadership, and the feasibility of sustainable community development resulting from those projects. The reader will be encouraged to consider how they can recognize needs within their own communities that could benefit from the assistance of architecture students and faculty.

Keywords: urban design, service-learning, civic engagement, community revitalization

Procedia PDF Downloads 94
10959 Exploring the Underlying Factors of Student Dropout in Makawanpur Multiple Campus: A Comprehensive Analysis

Authors: Uttam Aryal, Shekhar Thapaliya

Abstract:

This research paper presents a comprehensive analysis of the factors contributing to student dropout at Makawanpur Multiple Campus, utilizing primary data collected directly from dropped out as well as regular students and academic staff. Employing a mixed-method approach, combining qualitative and quantitative methods, this study examines into the complicated issue of student dropout. Data collection methods included surveys, interviews, and a thorough examination of academic records covering multiple academic years. The study focused on students who left their programs prematurely, as well as current students and academic staff, providing a well-rounded perspective on the issue. The analysis reveals a shaded understanding of the factors influencing student dropout, encompassing both academic and non-academic dimensions. These factors include academic challenges, personal choices, socioeconomic barriers, peer influences, and institutional-related issues. Importantly, the study highlights the most influential factors for dropout, such as the pursuit of education abroad, financial restrictions, and employment opportunities, shedding light on the complex web of circumstances that lead students to discontinue their education. The insights derived from this study offer actionable recommendations for campus administrators, policymakers, and educators to develop targeted interventions aimed at reducing dropout rates and improving student retention. The study underscores the importance of addressing the diverse needs and challenges faced by students, with the ultimate goal of fostering a supportive academic environment that encourages student success and program completion.

Keywords: drop out, students, factors, opportunities, challenges

Procedia PDF Downloads 62
10958 Implementing Effective Strategies to Improve Teaching and Learning in Higher Education: Balancing the Engagement Acts between Lecturers And Students

Authors: Jeffrey Siphiwe Mkhize

Abstract:

Twelve years of schooling for most South African children, particularly those children from disadvantaged past, are confronted with numerous and diverse challenges. These challenges range from infrastructural limitations, language of teaching, poor resources and varying family backgrounds. Likewise, schools are categorized to signify schools’ geographic location, poverty lines, societal class and type of students that the school are likely to enroll. Such categorization perpetuates particular lines of identities that are indirectly reinforced by the same system that seeks to redress. South African universities prefer point systems to determine students’ suitability to gain access to their programmes. Once students are admitted based on the qualifying points there is an assumed equity in the manner in which they receive tuition. They are assumed as equal; noting the widened access to South African universities as means to redress past inequalities. Given the challenges, inequalities, it is necessary to view higher education as a site for knowledge construction that is accessible to all students. Epistemological access is key to all students irrespective of their socio-economic status. This paper seeks to contribute to the discourse of student engagement using lecturer-student relationship as a lens to understand this phenomenon. Data were generated using South African Survey of Student Engagement, focus group interviews, semi-structured one-on-one-interviews as well as document analysis. The focus was on students registered for the first year of a Bachelor of Education degree as well as lecturers that teach high risk modules in this qualification at the same level. The findings suggest that lecturers are challenged by overcrowded classrooms and over-enrolled modules; this challenge hampers their good intentions to become more efficient and innovative in their teaching. Students lack confidence in approaching lecturers for assistance. Collaborative learning has stronger results and students believe in self-support to deal with their challenges based on their individual strengths. Collaborative learning is key to student academic performance.

Keywords: collaborative learning, consultations, student engagement, student performance

Procedia PDF Downloads 107
10957 Assessment of the Economic Factors and Motivations towards De-Dollarization since the Early 2000s and Their Implications

Authors: Laila Algalal, Chen Xi

Abstract:

The US dollar has long served as the world's primary reserve currency. However, this dominance faces growing challenges from internal US economic pressures and the rise of alternative currencies. Internally, issues like high debt, inflation, reduced competitiveness, and economic instability due to inequality in economic policies threaten the dollar's position. Externally, more countries are establishing alternative currencies, payment systems, and regional financial institutions to reduce dollar dependence. These drivers have contributed to a decline in the dollar's share of global foreign exchange reserves from 71% in 2001 to an estimated 58% in 2022. While this 13-percentage point drop took two decades, recent initiatives suggest de-dollarization could accelerate in the coming few decades. Efforts to establish non-dollar trade deals and alternative financial systems show more substantial progress compared to initiatives in the early 2000s. As the nature of the world system is anarchic, states make either individual or group efforts to guarantee their economic security and achieve their interests. Based on neoclassical realism, this paper analyzes both internal and external US economic factors driving current and future de-dollarization and the implications on the international monetary system, in addition to examining the motivation for such moves.

Keywords: de-dollarization, US dollar, monetary system, economic security, economic policies.

Procedia PDF Downloads 91
10956 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country

Authors: Saud Al Taj

Abstract:

Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semi-structured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment wherein signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.

Keywords: authenticity, counter-signals, employer branding, global-local problem, signaling theory

Procedia PDF Downloads 365
10955 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 52
10954 [Keynote Talk]: Software Reliability Assessment and Fault Tolerance: Issues and Challenges

Authors: T. Gayen

Abstract:

Although, there are several software reliability models existing today there does not exist any versatile model even today which can be used for the reliability assessment of software. Complex software has a large number of states (unlike the hardware) so it becomes practically difficult to completely test the software. Irrespective of the amount of testing one does, sometimes it becomes extremely difficult to assure that the final software product is fault free. The Black Box Software Reliability models are found be quite uncertain for the reliability assessment of various systems. As mission critical applications need to be highly reliable and since it is not always possible to ensure the development of highly reliable system. Hence, in order to achieve fault-free operation of software one develops some mechanism to handle faults remaining in the system even after the development. Although, several such techniques are currently in use to achieve fault tolerance, yet these mechanisms may not always be very suitable for various systems. Hence, this discussion is focused on analyzing the issues and challenges faced with the existing techniques for reliability assessment and fault tolerance of various software systems.

Keywords: black box, fault tolerance, failure, software reliability

Procedia PDF Downloads 425
10953 A Review of Current Research and Future Directions on Foodborne Illness and Food Safety: Understanding the Risks and Mitigation Strategies

Authors: Tuji Jemal Ahmed

Abstract:

This paper is to provides a comprehensive review of current research works on foodborne illness and food safety, including the risks associated with foodborne illnesses, the latest research on food safety, and the mitigation strategies used to prevent and control foodborne illnesses. Foodborne illness is a major public health concern that affects millions of people every year. As foodborne illnesses have grown more common and dangerous in recent years, it is vital that we research and build upon methods to ensure food remains safe throughout consumption. Additionally, this paper will discuss future directions for food safety research, including emerging technologies, changes in regulations and standards, and collaborative efforts to improve food safety. The first section of the paper provides an overview of the risks of foodborne illness, including a definition of foodborne illness, the causes of foodborne illness, the types of foodborne illnesses, and high-risk foods for foodborne illness, Health Consequences of Foodborne Illness. The second section of the paper focuses on current research on food safety, including the role of regulatory agencies in food safety, food safety standards and guidelines, emerging food safety concerns, and advances in food safety technology. The third section of the paper explores mitigation strategies for foodborne illness, including preventative measures, hazard analysis and critical control points (HACCP), good manufacturing practices (GMPs), and training and education. Finally, this paper examines future directions for food safety research, including hurdle technologies and their impact on food safety, changes in food safety regulations and standards, collaborative efforts to improve food safety, and research gaps and areas for further exploration. In general, this work provides a comprehensive review of current research and future directions in food safety and understanding the risks associated with foodborne illness. The implications of the assessment for food safety and public health are discussed, as well as recommended for research scholars.

Keywords: food safety, foodborne illness, technologies, mitigation

Procedia PDF Downloads 106
10952 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 138
10951 An Investigation of Sustainability: Scope of Eco Denim Fashion

Authors: Sneha Bhatnagar, Sachin Bhatnagar

Abstract:

Denim presently is the most widely accepted textile product and shows its hold even in future with its growing popularity. Denim today is no longer restricted to only a pair of jeans but has diversified in all different product categories. Although denim is considered as an expression of youth and demonstrates durability and comfort, denim raises issues of sustainability. Through an exploratory research, the researcher aims at addressing the possibilities of denim fashion promoting environmental sustainability by means of creativity, awareness, recycle and artisan appreciation. It also touches on how eco conscious fashion brands involve in development in terms of ideation and modification of denim as a fabric or product into diversified sustainable fashion. In conclusion, it is shown that blue denim fashion continues to evolve and shows eventual transformation in becoming green denim in future, nurturing values of both quality and sustainability.

Keywords: arts, craft, creativity, denim, fashion, recycle, sustainability

Procedia PDF Downloads 331
10950 Artificial Intelligence in College Admissions: Perspectives, Adoption Factors, and Future Directions Based on Existing Literature

Authors: Xiaojiao Duan, Zhaoxia Yi, Maria Assumpta Komugabe, Munirpallam A. Venkataramanan

Abstract:

This study explores stakeholders' perceptions and use of AI in university admissions using a conceptual model. The model suggests that AI expertise mediates the relationship between various factors (positions, experience, perceived benefits, concerns) and the desire to adopt AI. By reviewing existing research, the study identifies variables, correlations, and research gaps. The findings highlight the influence of institutional positions, AI expertise, knowledge, perceived advantages, and concerns on attitudes and intentions toward AI implementation. The review provides a framework for future research, emphasizes ethical AI use, and offers practical insights for admissions stakeholders.

Keywords: artificial intelligence, college admissions, ethical considerations, technology adoption, perceptions of AI

Procedia PDF Downloads 55
10949 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 33
10948 Smart Production Planning: The Case of Aluminium Foundry

Authors: Samira Alvandi

Abstract:

In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.

Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries

Procedia PDF Downloads 76
10947 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis

Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie

Abstract:

Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.

Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis

Procedia PDF Downloads 83
10946 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics

Authors: Pratik Pankaj Pawar

Abstract:

Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.

Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate

Procedia PDF Downloads 56
10945 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 111
10944 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 384
10943 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 99
10942 Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation

Authors: Raana Babadi Fathipour

Abstract:

Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future.

Keywords: antimicrobial edible film, biopolymer, antimicrobial agent, encapsulation, antimicrobial assay

Procedia PDF Downloads 57
10941 Simulation-Based Diversity Management in Human-Robot Collaborative Scenarios

Authors: Titanilla Komenda, Viktorio Malisa

Abstract:

In this paper, the influence of diversity-related factors on the design of collaborative scenarios is analysed. Based on the evaluation, a framework for simulating human-robot-collaboration is presented that considers both human factors as well as the overall system performance. The implementation of the model is shown on a real-life scenario from industry and validated in terms of traceability, safety and physical limitations. By comparing scenarios that consider diversity with those only meeting system performance, an overall understanding of individually adapted human-robot-collaborative workspaces is reached. A diversity-related guideline for human-robot-collaborations provides a summary of the research and aids in optimizing future applications. Finally, limitations and future amendments of the model are discussed.

Keywords: diversity, human-machine system, human-robot collaboration, simulation

Procedia PDF Downloads 302
10940 Influence of Dryer Autumn Conditions on Weed Control Based on Soil Active Herbicides

Authors: Juergen Junk, Franz Ronellenfitsch, Michael Eickermann

Abstract:

An appropriate weed management in autumn is a prerequisite for an economically successful harvest in the following year. In Luxembourg oilseed rape, wheat and barley is sown from August until October, accompanied by a chemical weed control with soil active herbicides, depending on the state of the weeds and the meteorological conditions. Based on regular ground and surface water-analysis, high levels of contamination by transformation products of respective herbicide compounds have been found in Luxembourg. The most ideal conditions for incorporating soil active herbicides are single rain events. Weed control may be reduced if application is made when weeds are under drought stress or if repeated light rain events followed by dry spells, because the herbicides tend to bind tightly to the soil particles. These effects have been frequently reported for Luxembourg throughout the last years. In the framework of a multisite long-term field experiment (EFFO) weed monitoring, plants observations and corresponding meteorological measurements were conducted. Long-term time series (1947-2016) from the SYNOP station Findel-Airport (WMO ID = 06590) showed a decrease in the number of days with precipitation. As the total precipitation amount has not significantly changed, this indicates a trend towards rain events with higher intensity. All analyses are based on decades (10-day periods) for September and October of each individual year. To assess the future meteorological conditions for Luxembourg, two different approaches were applied. First, multi-model ensembles from the CORDEX experiments (spatial resolution ~12.5 km; transient projections until 2100) were analysed for two different Representative Concentration Pathways (RCP8.5 and RCP4.5), covering the time span from 2005 until 2100. The multi-model ensemble approach allows for the quantification of the uncertainties and also to assess the differences between the two emission scenarios. Second, to assess smaller scale differences within the country a high resolution model projection using the COSMO-LM model was used (spatial resolution 1.3 km). To account for the higher computational demands, caused by the increased spatial resolution, only 10-year time slices have been simulated (reference period 1991-2000; near future 2041-2050 and far future 2091-2100). Statistically significant trends towards higher air temperatures, +1.6 K for September (+5.3 K far future) and +1.3 K for October (+4.3 K), were predicted for the near future compared to the reference period. Precipitation simultaneously decreased by 9.4 mm (September) and 5.0 mm (October) for the near future and -49 mm (September) and -10 mm (October) in the far future. Beside the monthly values also decades were analyzed for the two future time periods of the CLM model. For all decades of September and October the number of days with precipitation decreased for the projected near and far future. Changes in meteorological variables such as air temperature and precipitation did already induce transformations in weed societies (composition, late-emerging etc.) of arable ecosystems in Europe. Therefore, adaptations of agronomic practices as well as effective weed control strategies must be developed to maintain crop yield.

Keywords: CORDEX projections, dry spells, ensembles, weed management

Procedia PDF Downloads 234
10939 Catalytic Applications of Metal-Organic Frameworks for Organic Pollutant Removal in Wastewater Treatment: A Review

Authors: Matthew Ndubuisi Abonyi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne

Abstract:

This review focuses on the application of Metal-Organic Frameworks (MOF)-based catalysts in the degradation of organic pollutants in wastewater. The degradation of organic pollutants in wastewater remains a critical environmental challenge, necessitating innovative solutions for effective treatment. MOFs have garnered significant attention as promising catalysts for this purpose, owing to their exceptional surface area, tunable porosity, and diverse chemical functionalities. It explores various catalytic mechanisms, including photocatalysis, Fenton-like reactions, and other advanced oxidation processes facilitated by MOFs. The review also explores the design strategies that enhance the catalytic performance of MOFs, such as structural modifications, composite formation, and post-synthetic modifications. Furthermore, real-world case studies are presented, highlighting the practical applications and environmental impact of MOF-based catalysts in wastewater treatment. Challenges associated with the scalability and stability of these materials are discussed, along with future directions for research and development. This review highlights the significant potential of MOF-based catalysts in addressing the pressing issue of water pollution and advocates for continued innovation to optimize their application in wastewater treatment.

Keywords: metal-organic frameworks (MOFs), catalysis, wastewater treatment, organic pollutant degradation, photocatalysis

Procedia PDF Downloads 21
10938 Education 5.0 and the Proliferation of Social Entrepreneurs in Zimbabwe: Challenges and Opportunities for the Nation

Authors: Tsuu Faith Machingura, Doreen Nkala, Daniel Madzanire

Abstract:

Higher and tertiary Education in Zimbabwe is driven by is a five-pillar Education 5.0 model, which thrusts upon teaching, community engagement, research, innovation and industrialisation. Migration from the previous three-pillar model, the focus of which was on teaching, research and community engagement, to the current one saw universities churning out prolific social entrepreneurs. Apart from examining challenges social entrepreneurs face, the study aimed to identify opportunities that are available for the country as a corollary of the proliferation of social entrepreneurs. A sample of 20 participants comprising 15 social entrepreneurs and five lecturers was purposively drawn. Focus group and face to face interviews were used to gather data. The study revealed that the current higher and tertiary education model in Zimbabwe has stimulated proliferation of social entrepreneurs. It was recommended that a sound financial support system was needed to support new entrepreneurs.

Keywords: social entrepreneurs, education 5.0, innovation, industrialisation

Procedia PDF Downloads 86
10937 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract

Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala

Abstract:

Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.

Keywords: blockchain, data, data marketplace, smart contract, reputation system

Procedia PDF Downloads 156
10936 An Approach to Tackle Start up Problems Using Applied Games

Authors: Aiswarya Gopal, Kamal Bijlani, Vinoth Rengaraj, R. Jayakrishnan

Abstract:

In the business world, the term “startup” is frequently ringing the bell with the high frequency of young ventures. The main dilemma of startups is the unsuccessful management of the unique risks that have to be confronted in the present world of competition and technology. This research work tried to bring out a game based methodology to improve enough real-world experience among entrepreneurs as well as management students to handle risks and challenges in the field. The game will provide experience to the player to overcome challenges like market problems, running out of cash, poor management, and product problems which can be resolved by a proper strategic approach in the entrepreneurship world. The proposed serious game works on the life cycle of a new software enterprise where the entrepreneur moves from the planning stage to secured financial stage, laying down the basic business structure, and initiates the operations ensuring the increment in confidence level of the player.

Keywords: business model, game based learning, poor management, start up

Procedia PDF Downloads 473
10935 The Unspoken Learning Landscape of Indigenous Peoples (IP) Learners: A Process Documentation and Analysis

Authors: Ailene B. Anonuevo

Abstract:

The aim of the study was to evaluate the quality of life presently available for the IP students in selected schools in the Division of Panabo City. This further explores their future dreams and current status in classes and examines some implications relative to their studies. The study adopted the mixed methodology and used a survey research design as the operational framework for data gathering. Data were collected by self-administered questionnaires and interviews with sixty students from three schools in Panabo City. In addition, this study describes the learners’ background and school climate as variables that might influence their performance in school. The study revealed that an IP student needs extra attention due to their unfavorable learning environment. The study also found out that like any other students, IP learners yearns for a brighter future with the support of our government.

Keywords: IP learners, learning landscape, school climate, quality of life

Procedia PDF Downloads 223
10934 FisherONE: Employing Distinct Pedagogy through Technology Integration in Senior Secondary Education

Authors: J. Kontoleon, D.Gall, M.Pidskalny

Abstract:

FisherONE offers a distinct pedagogic model for senior secondary education that integrates advanced technology to meet the learning needs of Year 11 and 12 students across Catholic schools in Queensland. As a fully online platform, FisherONE employs pedagogy that combines flexibility with personalized, data-driven learning. The model leverages tools like the MaxHub hybrid interactive system and AI-powered learning assistants to create tailored learning pathways that promote student autonomy and engagement. This paper examines FisherONE’s success in employing pedagogic strategies through technology. Initial findings suggest that students benefit from the blended approach of virtual assessments and real-time support, even as AI-assisted tools remain in the proof-of-concept phase. The study outlines how FisherONE plans to continue refining its educational methods to better serve students in distance learning environments, specifically in challenging subjects like physics. The integration of technology in FisherONE enhances the effectiveness of teaching and learning, addressing common challenges in online education by offering scalable, individualized learning experiences. This approach demonstrates the future potential of technology in education and the role it can play in fostering meaningful student outcomes.

Keywords: AI-assisted learning, innovative pedagogy, personalized learning, senior education, technology in education

Procedia PDF Downloads 16
10933 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement

Authors: Asma Alzahrani, Elizabeth Stojanovski

Abstract:

This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N  =  21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.

Keywords: Mathematics achievement, math efficacy, mathematics interest, factors influence

Procedia PDF Downloads 147
10932 Structural Modeling and Experimental-Numerical Correlation of the Dynamic Behavior of the Portuguese Guitar by Using a Structural-Fluid Coupled Model

Authors: M. Vieira, V. Infante, P. Serrão, A. Ribeiro

Abstract:

The Portuguese guitar is a pear-shaped plucked chordophone particularly known for its role in Fado, the most distinctive traditional Portuguese musical style. The acknowledgment of the dynamic behavior of the Portuguese guitar, specifically of its modal and mode shape response, has been the focus of different authors. In this research, the experimental results of the dynamic behavior of the guitar, which were previously obtained, are correlated with a vibro-acoustic finite element model of the guitar. The modelling of the guitar offered several challenges which are presented in this work. The results of the correlation between experimental and numerical data are presented and indicate good correspondence for the studied mode shapes. The influence of the air inside the chamber, for the finite element analysis, is shown to be crucial to understand the low-frequency modes of the Portuguese guitar, while, for higher frequency modes, the geometry of the guitar assumes greater relevance. Comparison is made with the classical guitar, providing relevant information about the intrinsic differences between the two, such as between its tones and other acoustical properties. These results represent a sustained base for future work, which will allow the study of the influence of different location and geometry of diverse components of the Portuguese guitar, being as well an asset to the comprehension of its musical properties and qualities and may, furthermore, represent an advantage for its players and luthiers.

Keywords: dynamic behavior of guitars, instrument acoustics, modal analysis, Portuguese guitar

Procedia PDF Downloads 399
10931 Understanding Algerian International Student Mental Health Experiences in UK (United Kingdom) Universities: Difficulties of Disclosure, Help-Seeking and Coping Strategies

Authors: Nesrine Boussaoui

Abstract:

Background: International students often encounter challenges while studying in the UK, including communication and language barriers, lack of social networks, and socio-cultural differences that adversely impact on their mental health. For Algerian international students (AISs), these challenges may be heightened as English is not their first language and the culture of their homeland is substantially different from British culture, yet research has to incorporate their experiences and perspectives. Aim: The current study aimed to explore AISs’ 1) understandings of mental health; 2) issues of disclosure for mental health difficulties; and 3) mental health help-seeking and coping strategies. Method: In-depth, audio recorded semi-structured interviews (n = 20) with AISs in UK universities were conducted. An inductive, reflective thematic approach analysis was used. Finding: The following themes and associated sub-themes were developed: (1) Algerian cultural influences on mental health understanding(socio-cultural comparisons); (2) the paradox of the family (pressure vs. support); (3) stigma and fear of disclosure; (4) Barriers to formal help-seeking (informal disclosure as first step to seeking help); (5) Communication barriers (resort to mother tongue to disclose); (6) Self-reliance and religious coping. Conclusion: Recognising and understanding the challenges faced by AISs in terms of disclosure and mental health help-seeking is essential to reduce barriers to formal help-seeking. Informal disclosure among peers is often the first step to seeking help. Enhancing practitioners’ cultural competences and awareness of diverse understandings of mental health and the role of religious coping among AISs’ may have transferable benefits to a wider international student population.

Keywords: mental health, stegma, coping, disclosure

Procedia PDF Downloads 141