Search results for: data analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27371

Search results for: data analyses

26141 Nurse-Reported Perceptions of Medication Safety in Private Hospitals in Gauteng Province.

Authors: Madre Paarlber, Alwiena Blignaut

Abstract:

Background: Medication administration errors remains a global patient safety problem targeted by the WHO (World Health Organization), yet research on this matter is sparce within the South African context. Objective: The aim was to explore and describe nurses’ (medication administrators) perceptions regarding medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province of South Africa, and to determine any relationships between perceived variables concerned with medication safety (safety culture, incidences, causes, reporting of incidences, and reasons for non-reporting). Method: A quantitative research design was used through which self-administered online surveys were sent to 768 nurses (medication administrators) (n=217). The response rate was 28.26%. The survey instrument was synthesised from the Agency of Healthcare Research and Quality (AHRQ) Hospital Survey on Patient Safety Culture, the Registered Nurse Forecasting (RN4CAST) survey, a survey list prepared from a systematic review aimed at generating a comprehensive list of medication administration error causes and the Medication Administration Error Reporting Survey from Wakefield. Exploratory and confirmatory factor analyses were used to determine the validity and reliability of the survey. Descriptive and inferential statistical data analysis were used to analyse quantitative data. Relationships and correlations were identified between items, subscales and biographic data by using Spearmans’ Rank correlations, T-Tests and ANOVAs (Analysis of Variance). Nurses reported on their perceptions of medication administration safety-related culture, incidence, causes, and reporting in the Gauteng Province. Results: Units’ teamwork deemed satisfactory, punitive responses to errors accentuated. “Crisis mode” working, concerns regarding mistake recording and long working hours disclosed as impacting patient safety. Overall medication safety graded mostly positively. Work overload, high patient-nurse ratios, and inadequate staffing implicated as error-inducing. Medication administration errors were reported regularly. Fear and administrative response to errors effected non-report. Non-report of errors’ reasons was affected by non-punitive safety culture. Conclusions: Medication administration safety improvement is contingent on fostering a non-punitive safety culture within units. Anonymous medication error reporting systems and auditing nurses’ workload are recommended in the quest of improved medication safety within Gauteng Province private hospitals.

Keywords: incidence, medication administration errors, medication safety, reporting, safety culture

Procedia PDF Downloads 54
26140 Analysis of Delivery of Quad Play Services

Authors: Rahul Malhotra, Anurag Sharma

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: FTTH, quad play, play service, access networks, data rate

Procedia PDF Downloads 415
26139 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability

Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy

Abstract:

This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).

Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality

Procedia PDF Downloads 257
26138 Rejection Sensitivity and Romantic Relationships: A Systematic Review and Meta-Analysis

Authors: Mandira Mishra, Mark Allen

Abstract:

This meta-analysis explored whether rejection sensitivity relates to facets of romantic relationships. A comprehensive literature search identified 60 studies (147 effect sizes; 16,955 participants) that met inclusion criteria. Data were analysed using inverse-variance weighted random effects meta-analysis. Mean effect sizes from 21 meta-analyses provided evidence that more rejection sensitive individuals report lower levels of relationship satisfaction and relationship closeness, lower levels of perceived partner satisfaction, a greater likelihood of intimate partner violence (perpetration and victimization), higher levels of relationship concerns and relationship conflict, and higher levels of jealousy and self-silencing behaviours. There was also some evidence that rejection sensitive individuals are more likely to engage in risky sexual behaviour and are more prone to sexual compulsivity. There was no evidence of publication bias and various levels of heterogeneity in computed averages. Random effects meta-regression identified participant age and sex as important moderators of pooled mean effects. These findings provide a foundation for the theoretical development of rejection sensitivity in romantic relationships and should be of interest to relationship and marriage counsellors and other relationship professionals.

Keywords: intimate partner violence, relationship satisfaction, commitment, sexual orientation, risky sexual behaviour

Procedia PDF Downloads 81
26137 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
26136 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 85
26135 The Effect of Parameters on Production of NİO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: F. Sevim, E. Sevimli, F. Demir, T. Çalban

Abstract:

For the first time, nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters of 500 nm could be successfully obtained. The fibers were characterized by TG/DTA, FT-IR, XRD and SEM analyses.

Keywords: nano fibers, NiO/Al2O3/B2O3/SiO2 composite, sol-gel processing, electro spinning

Procedia PDF Downloads 337
26134 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 360
26133 Depressive Trends in Children and Adolescents Suffering from Beta-Thalassemia

Authors: Sanober Khanum, Barerah Siddiqui, Asim Qidwai

Abstract:

Objective: To determine the risk factors and frequency of depressive trends in children and adolescents suffering from Beta-Thalassemia. Background: Thalassemia is a chronic disease affecting 10,000 people in 60 countries. Many studies show that prolonged medical conditions cause depression. Due to the invasive procedures and suffering, Beta-Thalassemia cause great psychological distress to both children and their caregivers. The study shows 14-24% prevalence of psychiatric problems in Thalassemic patients. Method: Sample consisted of 195 registered patients of A.M.T.F (Female=95 and Male=100). Based on age range the sample was divided into two groups, Group A = children (4-9 years) and Group B = adolescent (10-16 years). A detailed interview with a self-made screening measure was administered on parents to find out the level of depression in patients. Statistics: Chi-square and t-test was applied in order to analyze the data. Results show high prevalence of depression, depression n= 131(66.83%), no depression n=65(33.16%). Analyses reflect that age influences the level of depression Adolescent (71.05%) and Children (64.16%). The analysis also shows a difference in level of depression between both genders. (t=2.975, p < .05). Conclusion: There is a high possibility of developing depressive trend in children affected with Beta Thalassemia; especially females. Therefore, there is a dire need for psychological screening and appropriate treatment in order to improve physical; as well as mental health.

Keywords: childhood depression, chronic illness, psychopathology, Thalassemia

Procedia PDF Downloads 329
26132 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: data science, non-negative matrix factorization, missing data, quality of services

Procedia PDF Downloads 131
26131 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 95
26130 Students With Special Educational Needs in Regular Classrooms and their Peer Effects on Learning Achievement

Authors: José María Renteria, Vania Salas

Abstract:

This study explores the impact of inclusive education on the educational outcomes of students without Special Educational Needs (non-SEN) in Peru, utilizing official Ministry of Education data and implementing cross-sectional regression analyses. Inclusive education is a complex issue that, without appropriate adaptations and comprehensive understanding, can present substantial challenges to the educational community. While prior research from developed nations offers diverse perspectives on the effects of inclusive education on non-SEN students, limited evidence exists regarding its impact in developing countries. Our study addresses this gap by examining inclusive education in Peru and its effects on non-SEN students, thereby contributing to the existing literature. the findings reveal that, on average, the presence of SEN students in regular classrooms does not significantly affect their non-SEN counterparts. However, we uncover heterogeneous effects contingent on the specific type of SEN and students’ academic placement. These results emphasize the importance of targeted resources, specialized teachers, and parental involvement in facilitating successful inclusive education, particularly for specific SEN types and students positioned at the lower end of the academic achievement spectrum. In summary, this study underscores the need for tailored strategies and additional resources to foster the success of inclusive education and calls for further research in this field to expand our understanding and enhance educational policy.

Keywords: inclusive education, special educational needs, learning achievement, Peru, Basic education

Procedia PDF Downloads 81
26129 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 221
26128 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data

Authors: Sachin Nagargoje

Abstract:

Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.

Keywords: semi-supervised learning, clustering, recall, coverage

Procedia PDF Downloads 122
26127 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
26126 Demographic Dividend and Creation of Human and Knowledge Capital in Liberal India: An Endogenous Growth Process

Authors: Arjun K., Arumugam Sankaran, Sanjay Kumar, Mousumi Das

Abstract:

The paper analyses the existence of endogenous growth scenario emanating from the demographic dividend in India during the liberalization period starting from 1980. Demographic dividend creates a fertile ground for the cultivation of human and knowledge capitals contributing to technological progress which can be measured using total factor productivity. The relationship among total factor productivity, human and knowledge capitals are examined in an open endogenous framework for the period 1980-2016. The control variables such as foreign direct investment, trade openness, energy consumption are also employed. The data are sourced from Reserve Bank of India, World Bank, International Energy Agency and The National Science and Technology Management Information System. To understand the dynamic association among variables, ARDL bounds approach to cointegration followed by Toda-Yamamoto causality test are used. The results reveal a short run and long run relationship among the variables supported by the existence of causality. This calls for an integrated policy to build and augment human capital and research and development activities to sustain and pace up growth and development in the nation.

Keywords: demographic dividend, young population, open endogenous growth models, human and knowledge capital

Procedia PDF Downloads 151
26125 AI Ethical Values as Dependent on the Role and Perspective of the Ethical AI Code Founder- A Mapping Review

Authors: Moshe Davidian, Shlomo Mark, Yotam Lurie

Abstract:

With the rapid development of technology and the concomitant growth in the capability of Artificial Intelligence (AI) systems and their power, the ethical challenges involved in these systems are also evolving and increasing. In recent years, various organizations, including governments, international institutions, professional societies, civic organizations, and commercial companies, have been choosing to address these various challenges by publishing ethical codes for AI systems. However, despite the apparent agreement that AI should be “ethical,” there is debate about the definition of “ethical artificial intelligence.” This study investigates the various AI ethical codes and their key ethical values. From the vast collection of codes that exist, it analyzes and compares 25 ethical codes that were found to be representative of different types of organizations. In addition, as part of its literature review, the study overviews data collected in three recent reviews of AI codes. The results of the analyses demonstrate a convergence around seven key ethical values. However, the key finding is that the different AI ethical codes eventually reflect the type of organization that designed the code; i.e., the organizations’ role as regulator, user, or developer affects the view of what ethical AI is. The results show a relationship between the organization’s role and the dominant values in its code. The main contribution of this study is the development of a list of the key values for all AI systems and specific values that need to impact the development and design of AI systems, but also allowing for differences according to the organization for which the system is being developed. This will allow an analysis of AI values in relation to stakeholders.

Keywords: artificial intelligence, ethical codes, principles, values

Procedia PDF Downloads 107
26124 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: TTS, ontology, open street map, visually impaired

Procedia PDF Downloads 295
26123 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses

Authors: Yuqing Zou, Chunrui Zou, Yichong Cao

Abstract:

Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.

Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement

Procedia PDF Downloads 93
26122 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks

Authors: Walid Fantazi

Abstract:

The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.

Keywords: WSN, indexing data, SOA, RIA, geographic information system

Procedia PDF Downloads 253
26121 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings

Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol

Abstract:

After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.

Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation

Procedia PDF Downloads 234
26120 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog

Authors: Ana Flavia Belchior De Andrade

Abstract:

Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.

Keywords: backlog, forensic laboratory, quality management, accreditation

Procedia PDF Downloads 122
26119 The State of Urban Neighbourhood Research

Authors: Gideon Baffoe

Abstract:

The concept of neighbourhood remains highly relevant in urban studies. However, until now, no attempt has been made to statistically chart the field. This study aims to provide a macroscopic overview using bibliometric analysis of the main characteristics of neighbourhood research in order to understand the academic landscape. The study analyses the emergence and evolution of the concept of neighbourhood in published research, conceptual and intellectual structures as well as scholarship collaboration. It is found that topics related to the local economy of neighbourhoods are sparse, suggesting a major gap in the literature.

Keywords: neighbourhood, global south, bibliometric analysis, scholarship

Procedia PDF Downloads 136
26118 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets

Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.

Abstract:

The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.

Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction

Procedia PDF Downloads 117
26117 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: absorption, data throughput, depolarization, optical fiber

Procedia PDF Downloads 286
26116 Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches

Authors: Rim Ben Amor, Myriam Abidi, Moncef Gueddari

Abstract:

The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention.

Keywords: trace metals, phosphogypsum, core sediments, accumulation factor, contamination factor

Procedia PDF Downloads 141
26115 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 451
26114 Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues

Authors: Michelle J. Miller

Abstract:

In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy.

Keywords: outsourcing, data privacy, international compliance, multinational corporations

Procedia PDF Downloads 411
26113 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: data grid, data replication, simulation, replica selection, replica placement

Procedia PDF Downloads 260
26112 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain

Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz

Abstract:

Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.

Keywords: meteosat, radar, rainfall, rain-gauge, Turkey

Procedia PDF Downloads 328