Search results for: capacitive pressure sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5385

Search results for: capacitive pressure sensor

4155 Effect of Punch Diameter on Optimal Loading Profiles in Hydromechanical Deep Drawing Process

Authors: Mehmet Halkaci, Ekrem Öztürk, Mevlüt Türköz, H. Selçuk Halkacı

Abstract:

Hydromechanical deep drawing (HMD) process is an advanced manufacturing process used to form deep parts with only one forming step. In this process, sheet metal blank can be drawn deeper by means of fluid pressure acting on sheet surface in the opposite direction of punch movement. High limiting drawing ratio, good surface quality, less springback characteristic and high dimensional accuracy are some of the advantages of this process. The performance of the HMD process is affected by various process parameters such as fluid pressure, blank holder force, punch-die radius, pre-bulging pressure and height, punch diameter, friction between sheet-die and sheet-punch. The fluid pressure and bank older force are the main loading parameters and affect the formability of HMD process significantly. The punch diameter also influences the limiting drawing ratio (the ratio of initial sheet diameter to punch diameter) of the sheet metal blank. In this research, optimal loading (fluid pressure and blank holder force) profiles were determined for AA 5754-O sheet material through fuzzy control algorithm developed in previous study using LS-DYNA finite element analysis (FEA) software. In the preceding study, the fuzzy control algorithm was developed utilizing geometrical criteria such as thinning and wrinkling. In order to obtain the final desired part with the developed algorithm in terms of the punch diameter requested, the effect of punch diameter, which is the one of the process parameters, on loading profiles was investigated separately using blank thickness of 1 mm. Thus, the practicality of the previously developed fuzzy control algorithm with different punch diameters was clarified. Also, thickness distributions of the sheet metal blank along a curvilinear distance were compared for the FEA in which different punch diameters were used. Consequently, it was found that the use of different punch diameters did not affect the optimal loading profiles too much.

Keywords: Finite Element Analysis (FEA), fuzzy control, hydromechanical deep drawing, optimal loading profiles, punch diameter

Procedia PDF Downloads 431
4154 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 161
4153 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing

Authors: Ahmed E. Hodaib, Muhammed A. Hashem

Abstract:

High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.

Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing

Procedia PDF Downloads 330
4152 Pressure Induced Phase Transition and Elastic Properties of Cerium Mononitride

Authors: Namrata Yaduvanshi, Shilpa Kapoor, Pooja Pawar, Sadhna Singh

Abstract:

In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mononitride. We studied theoretically the structural properties of this compound (CeN) by using the Improved Interaction Potential Model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B1) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data.

Keywords: phase transition, volume collapse, elastic constants, three body interaction

Procedia PDF Downloads 480
4151 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.

Keywords: flammable zones, gas pipelines, numerical simulation, wind effects

Procedia PDF Downloads 166
4150 Smart Technology Work Practices to Minimize Job Pressure

Authors: Babar Rasheed

Abstract:

The organizations are in continuous effort to increase their yield and to retain their associates, employees. Technology is considered an integral part of attaining apposite work practices, work environment, and employee engagement. Unconsciously, these advanced practices like work from home, personalized intra-network are disturbing employee work-life balance which ultimately increases psychological pressure on employees. The smart work practice is to develop business models and organizational practices with enhanced employee engagement, minimum trouncing of organization resources with persistent revenue and positive addition in global societies. Need of smart work practices comes from increasing employee turnover rate, global economic recession, unnecessary job pressure, increasing contingent workforce and advancement in technologies. Current practices are not enough elastic to tackle global changing work environment and organizational competitions. Current practices are causing many reciprocal problems among employee and organization mechanically. There is conscious understanding among business sectors smart work practices that will deal with new century challenges with addressing the concerns of relevant issues. It is aimed in this paper to endorse customized and smart work practice tools along knowledge framework to manage the growing concerns of employee engagement, use of technology, orgaization concerns and challenges for the business. This includes a Smart Management Information System to address necessary concerns of employees and combine with a framework to extract the best possible ways to allocate companies resources and re-align only required efforts to adopt the best possible strategy for controlling potential risks.

Keywords: employees engagement, management information system, psychological pressure, current and future HR practices

Procedia PDF Downloads 184
4149 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 178
4148 Determinaton of Processing Parameters of Decaffeinated Black Tea by Using Pilot-Scale Supercritical CO₂ Extraction

Authors: Saziye Ilgaz, Atilla Polat

Abstract:

There is a need for development of new processing techniques to ensure safety and quality of final product while minimizing the adverse impact of extraction solvents on environment and residue levels of these solvents in final product, decaffeinated black tea. In this study pilot scale supercritical carbon dioxide (SCCO₂) extraction was used to produce decaffeinated black tea in place of solvent extraction. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO₂ flow rate (1, 2 ,3 LPM) and co-solvent quantity (0, 2.5, 5 %mol) were selected as extraction parameters. The five factors BoxBehnken experimental design with three center points was performed to generate 46 different processing conditions for caffeine removal from black tea samples. As a result of these 46 experiments caffeine content of black tea samples were reduced from 2.16 % to 0 – 1.81 %. The experiments showed that extraction time, pressure, CO₂ flow rate and co-solvent quantity had great impact on decaffeination yield. Response surface methodology (RSM) was used to optimize the parameters of the supercritical carbon dioxide extraction. Optimum extraction parameters obtained of decaffeinated black tea were as follows: extraction temperature of 62,5 °C, extraction pressure of 375 bar, CO₂ flow rate of 3 LPM, extraction time of 176.5 min and co-solvent quantity of 5 %mol.

Keywords: supercritical carbon dioxide, decaffeination, black tea, extraction

Procedia PDF Downloads 364
4147 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats

Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das

Abstract:

Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.

Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity

Procedia PDF Downloads 419
4146 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants

Authors: Ambra Giovannelli, Coriolano Salvini

Abstract:

Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.

Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants

Procedia PDF Downloads 217
4145 CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient

Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug

Abstract:

CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.

Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways

Procedia PDF Downloads 306
4144 Tensile Strength of Asphalt Concrete Due to Moisture Conditioning

Authors: R. Islam, Rafiqul A. Tarefder

Abstract:

This study investigates the effect of moisture conditioning on the Indirect Tensile Strength (ITS) of asphalt concrete. As a first step, cylindrical samples of 100 mm diameter and 50 mm thick were prepared using a Superpave gyratory compactor. Next, the samples were conditioned using Moisture Induced Susceptibility Test (MIST) device at different numbers of moisture conditioning cycles. In the MIST device, samples are subjected water pressure through the sample pores cyclically. The MIST conditioned samples were tested for ITS. Results show that the ITS does not change significantly with MIST conditioning at the specific pressure and cycles adopted in this study.

Keywords: asphalt concrete, tensile strength, moisture, laboratory test

Procedia PDF Downloads 381
4143 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 343
4142 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 202
4141 Freezing Characteristics and Texture Variation of Apple Fruits after Dehydrofreezing Assisted by Instant Controlled Pressure Drop Treatment

Authors: Leila Ben Haj Said, Sihem Bellagha, Karim Allaf

Abstract:

The present study deals with the dehydrofreezing assisted by instant controlled pressure drop (DIC) treatment of apple fruits. Samples previously dehydrated until different water contents (200, 100, and 30% dry basis (db)) and DIC treated were frozen at two different freezing velocities (V+ and V-), depending on the thermal resistance established between the freezing airflow and the sample surface. The effects of sample water content (W) and freezing velocity (V) on freezing curves and characteristics, exudate water (EW) and texture variation were examined. Lower sample water content implied higher freezing rates, lower initial freezing points (IFP), lower practical freezing time (PFT), and lower specific freezing time (SFT). EW (expressed in g exudate water/100 g water in the product) of 200% and 100% db apple samples was approximately 3%, at low freezing velocity (V-). Whereas, it was lower than 0.5% for apple samples with 30% db water content. Moreover, the impact of freezing velocity on EW was significant and very important only for high water content samples. For samples whose water content was lower than 100% db, firmness (maximum puncture force) was as higher as the water content was lower, without any insignificant impact of freezing velocity.

Keywords: dehydrofreezing, instant controlled pressure drop DIC, freezing time, texture

Procedia PDF Downloads 380
4140 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 388
4139 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 449
4138 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems

Authors: Taha Bensiradj, Samira Moussaoui

Abstract:

Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.

Keywords: HSVN, ITS, VANET, WSN

Procedia PDF Downloads 361
4137 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 44
4136 The Effect of Post Spinal Hypotension on Cerebral Oxygenation Using Near-Infrared Spectroscopy and Neonatal Outcomes in Full Term Parturient Undergoing Lower Segment Caesarean Section: A Prospective Observational Study

Authors: Shailendra Kumar, Lokesh Kashyap, Puneet Khanna, Nishant Patel, Rakesh Kumar, Arshad Ayub, Kelika Prakash, Yudhyavir Singh, Krithikabrindha V.

Abstract:

Introduction: Spinal anesthesia is considered a standard anesthesia technique for caesarean delivery. The incidence of spinal hypotension during caesarean delivery is 70 -80%. Spinal hypotension may cause cerebral hypoperfusion in the mother, but physiologically cerebral autoregulatory mechanisms accordingly prevent cerebral hypoxia. Cerebral blood flow remains constant in the 50-150 mmHg of Cerebral Perfusion Pressure (CPP) range. Near-infrared spectroscopy (NIRS) is a non-invasive technology that is used to detect Cerebral Desaturation Events (CDEs) immediately compared to other conventional intraoperative monitoring techniques. Objective: The primary aim of the study is to correlate the change in cerebral oxygen saturation using NIRS with respect to a fall in mean blood pressure after spinal anaesthesia and to find out the effects of spinal hypotension on neonatal APGAR score, neonatal acid-base variations, and presence of Postoperative Delirium (POD). Methodology: NIRS sensors were attached to the forehead of all the patients, and their baseline readings of cerebral oxygenation on the right and left frontal regions and mean blood pressure were noted. Subarachnoid block was given with hyperbaric 0.5% bupivacaine plus fentanyl, the dose being determined by the individual anaesthesiologist. Co-loading of IV crystalloid solutions was given to the patient. Blood pressure reading and cerebral saturation were recorded every 1 minute till 30min. Hypotension was a fall in MAP less than 20% of the baseline values. Patients going for hypotension were treated with an IV Bolus of phenylephrine/ephedrine. Umbilical cord blood samples were taken for blood gas analysis, and neonatal APGAR was noted by a neonatologist. Study design: A prospective observational study conducted in a population of Thirty ASA 2 and 3 parturients scheduled for lower segment caesarean section (LSCS). Results: Mean fall in regional cerebral saturation is 28.48 ± 14.7% with respect to the mean fall in blood pressure 38.92 ± 8.44 mm Hg. The correlation coefficient between fall in saturation and fall in mean blood pressure is 0.057, and p-value {0.7} after subarachnoid block. A fall in regional cerebral saturation occurred 2±1 min before a fall in mean blood pressure. Twenty-nine out of thirty patients required vasopressors during hypotension. The first dose of vasopressor requirement is needed at 6.02±2 min after the block. The mean APGAR score was 7.86 and 9.74 at 1 and 5 min of birth, respectively, and the mean umbilical arterial pH of 7.3±0.1. According to DRS-98 (Delirium Rating Scale), the mean delirium rating score on postoperative day 1 and day 2 were 0.1 and 0.7, respectively. Discussion: There was a fall in regional cerebral oxygen saturation, which started before with respect to a significant fall in mean blood pressure readings but was statistically not significant. Maximal fall in blood pressure requiring vasopressors occurs within 10 min of SAB. Neonatal APGAR scores and acid-base variations were in the normal range with maternal hypotension, and there was no incidence of postoperative delirium in patients with post-spinal hypotension.

Keywords: cerebral oxygenation, LSCS, NIRS, spinal hypotension

Procedia PDF Downloads 69
4135 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: common rail, hydrogen engine, port injection, wave propagation

Procedia PDF Downloads 424
4134 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor

Authors: Niloofar Zebarjad

Abstract:

This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.

Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket

Procedia PDF Downloads 294
4133 Shunt Placement in Treatment of Hydrocephalus in Patients with Myelomeningocele

Authors: M. M. Akhmediev, J. R. Ashrapov, T. M. Akhmediev

Abstract:

Hydrocephalus frequently occurs with spina bifida, and up to 80% of such patients need to be shunted. Objective: It’s sought to improve the results of the surgical treatment of hydrocephalus in children with spina bifida. Methods: We have analyzed the results of the surgical treatment of 80 patients aged between 1 month and 1,5-year-old with hydrocephalus and myelomeningocele. All patients underwent surgery in the period of 2013-2018. Results: In all patients, spina bifida was associated with hydrocephalus with a predominant extension of the posterior horns of the lateral ventricles in the form of colpocephaly, Chiari malformation type 2. Based on the method “Choose right shunt” the determination of the point of critical deformation of the ventricular system was established, 47 (58.8%) patients for the 1st stage underwent ventriculoperitoneal (VP) shunt surgery with a low-pressure valve, 28 (35.0%) patients with medium pressure and 5 (6.2%) with high-pressure valve. Under or over drainage complications were not observed in the postoperative period. The 2nd stage of surgery for myelomeningocele repair was planned in 1-2 months with the follow-up head ultrasonography and electromyography study. Conclusion: The implantable shunt systems parameters chosen before surgery in the surgical management of hydrocephalus in children with myelomeningocele are important in the causes of under or over drainage states, cerebrospinal fluid leakage from the myelomeningocele sac. Management of hydrocephalus should be performed by considering myelomeningocele affecting craniospinal compliance.

Keywords: hydrocephalus, spina bifida, myelomeningocele, ventriculoperitoneal (VP) shunt

Procedia PDF Downloads 117
4132 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii

Authors: Flora Paganelli

Abstract:

The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.

Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology

Procedia PDF Downloads 241
4131 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise

Authors: Adkham Paiziev, Fikrat Kerimov

Abstract:

Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.

Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy

Procedia PDF Downloads 275
4130 Obesity and Physical Inactivity: Contributing Factors to Hypertension in Early Adults

Authors: Sadaf Ambreen, Ayesha Bibi, Sara Rafiq

Abstract:

Hypertension is a medical condition in which blood pressure in the arteries is elevated than the normal, having systolic blood pressure more than 120mmHg and diastolic blood pressure more than 80 mmHg. It leads to health complications and increase the risk of diseases such as stroke, heart failure, heart attack, and even death. The aim of the current study was to evaluate nutritional status and activity level among hypertensive early adults in District Mardan Data was collected from the subjects of Public Hospital, Mardan Medical Complex, through questionnaire. A complete information about individual sociodemographic, anthropometry and health status were collected, and physical activity was assessed by using IPAQ questionnaire. A total of 150 individuals were included in the study, in which 90% were females, and 10% were males. Data was analyzed through SPSS Version 22. Majority of the study subjects, 88%, were married, 70% having nuclear living system, 43% were having elementary education, and 43% were working as laborer. Body mass index and waist circumference in female counterpart were found to be positively associated with hypertension and was found statistically significant P=<0.01. Results showed that majority of females were fall in hypertension crisis category with mild activity, and males were having hypertension stage 1 with moderate activity. Our study concluded that non-optimal nutritional status and physical inactivity resulted in elevated blood pressure in females, therefore, lifestyle change such as optimal nutritional status and physical activity may play key role in reducing risk of hypertension.

Keywords: obesity/overwight, body mass index, waist circumference, early adulthood

Procedia PDF Downloads 148
4129 Stress Analysis of a Pressurizer in a Pressurized Water Reactor Using Finite Element Method

Authors: Tanvir Hasan, Minhaz Uddin, Anwar Sadat Anik

Abstract:

A pressurizer is a safety-related reactor component that maintains the reactor operating pressure to guarantee safety. Its structure is usually made of high thermal and pressure resistive material. The mechanical structure of these components should be maintained in all working settings, including transient to severe accidents conditions. The goal of this study is to examine the structural integrity and stress of the pressurizer in order to ensure its design integrity towards transient situations. For this, the finite element method (FEM) was used to analyze the mechanical stress on pressurizer components in this research. ANSYS MECHANICAL tool was used to analyze a 3D model of the pressurizer. The material for the body and safety relief nozzle is selected as low alloy steel i.e., SA-508 Gr.3 Cl.2. The model was put into ANSYS WORKBENCH and run under the boundary conditions of (internal Pressure, -17.2 MPa, inside radius, -1348mm, the thickness of the shell, -127mm, and the ratio of the outside radius to an inside radius, - 1.059). The theoretical calculation was done using the formulas and then the results were compared with the simulated results. When stimulated at design conditions, the findings revealed that the pressurizer stress analysis completely fulfilled the ASME standards.

Keywords: pressurizer, stress analysis, finite element method, nuclear reactor

Procedia PDF Downloads 158
4128 Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings

Authors: Meral Yucel, Vildan Ok

Abstract:

This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009.

Keywords: high rise buildings, pressure coefficients, wind tunnel experiments, wind standard of tall buildings

Procedia PDF Downloads 281
4127 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids

Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje

Abstract:

Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.

Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise

Procedia PDF Downloads 128
4126 High Blood Pressure and Type 2 Diabetes Mellitus: A Study on Lay Understandings and Uses of Pharmaceuticals and Medicinal Plants for Treatment in Matzikama Municipal Region, Western Cape, South Africa

Authors: Diana Gibson

Abstract:

Aim: The first aim of the study was to ascertain the percentage of people who had been diagnosed with High Blood Pressure and/ or Type2 Diabetes Mellitus in Matzikama municipal district, Western Cape, South Africa. These two conditions are reportedly very high in this particular province, even though few statistics are available. A second aim was to gain insight into the understanding of these two conditions among sufferers. A third aim was to determine their allopathic use as well as indigenous medicinal plants to manage these conditions. A fourth aim was to understand how users of medicinal plants attend to their materiality and relationality as a continuum between humans and plants. The final aim was to ascertain the conservation status of medicinal plants utilised. Methods: One thousand one hundred and eighty-four (1184) respondents were interviewed. Semi-structured surveys were utilised to gather data on the percentage of people who had been medically diagnosed with High Blood Pressure and/or Type 2 Diabetes Mellitus. Local healers and knowledgeable old people were subsequently selected through a non-probability snowball sampling method. They were helped with plant collection. The plants were botanically identified. Results: The study found that people who have been diagnosed with High Blood Pressure or Type 2 Diabetes Mellitus drew on and continuously moved between biomedical and local understandings of these conditions. While they followed biomedical treatment regimens as far as possible they also drew on alternative ways of managing it through the use of medicinal plants. The most commonly used plant species overall were Lessertia frutescens, Tulbaghia violacea, Artemisia afra and Leonotus leonurus. For the users, medicinal plants were not mere material entities, they were actants in social networks where knowledge was produced through particular practices in specific places. None of the identified plants are currently threatened. Significance: Sufferers had a good understanding of the symptoms of and biomedical treatment regime for both conditions, but in everyday life they adhered to their local understandings and medicinal plants for treatment. The majority used reportedly used prescribed medication as well as plant alternatives.

Keywords: diabetes, high blood pressure, medicine, plants

Procedia PDF Downloads 244