Search results for: artificial groundwater recharge
1457 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land
Authors: Jalil Badamfirooz
Abstract:
Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.Keywords: mulch, bitumen emulsion, arid land, PAH
Procedia PDF Downloads 891456 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 911455 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 691454 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India
Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee
Abstract:
Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1
Procedia PDF Downloads 1271453 Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test
Authors: Reza Ziaie Moayed, Seyed Abdolhassan Naeini, Peyman Nouri, Hamed Yekehdehghan
Abstract:
The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test.Keywords: liquidity index, plasticity index, shear strength, unsaturated soil
Procedia PDF Downloads 1351452 Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France
Authors: Farzaneh Sarbandi Farahani
Abstract:
Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning
Procedia PDF Downloads 901451 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1251450 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1531449 Livelihood Security and Mitigating Climate Changes in the Barind Tract of Bangladesh through Agroforestry Systems
Authors: Md Shafiqul Bari, Md Shafiqul Islam Sikdar
Abstract:
This paper summarizes the current knowledge on Agroforestry practices in the Barind tract of Bangladesh. The part of greater Rajshahi, Dinajpur, Rangpur and Bogra district of Bangladesh is geographically identified as the Barind tract. The hard red soil of these areas is very significant in comparison to that of the other parts of the country. A typical dry climate with comparatively high temperature prevails in the Barind area. Scanty rainfall and excessive extraction of groundwater have created an alarming situation among the Barind people and others about irrigation to the rice field. In addition, the situation may cause an adverse impact on the people whose livelihood largely depends on agriculture. The groundwater table has been declined by at least 10 to 15 meters in some areas of the Barind tract during the last 20 years. Due to absent of forestland in the Barind tract, the soil organic carbon content can decrease more rapidly because of the higher rate of decomposition. The Barind soils are largely carbon depleted but can be brought back to carbon-carrying capacity by bringing under suitable Agroforestry systems. Agroforestry has tremendous potential for carbon sequestration not only in above C biomass but also root C biomass in deeper soil depths. Agroforestry systems habitually conserve soil organic carbon and maintain a great natural nutrient pool. Cultivation of trees with arable crops under Agroforestry systems help in improving soil organic carbon content and sequestration carbon, particularly in the highly degraded Barind lands. Agroforestry systems are a way of securing the growth of cash crops that may constitute an alternative source of income in moments of crisis. Besides being a source of fuel wood, a greater presence of trees in cropping system contributes to decreasing temperatures and to increasing rainfall, thus contrasting the negative environmental impact of climate changes. In order to fulfill the objectives of this study, two experiments were conducted. The first experiment was survey on the impact of existing agroforestry system on the livelihood security in the Barind tract of Bangladesh and the second one was the role of agroforestry system on the improvement of soil properties in a multilayered coconut orchard. Agroforestry systems have been generated a lot of employment opportunities in the Barind area. More crops mean involvement of more people in various activities like involvements in dairying, sericulture, apiculture and additional associated agro-based interventions. Successful adoption of Agroforestry practices in the Barind area has shown that the Agroforestry practitioners of this area were very sound positioned economically, and had added social status too. However, from the findings of the present study, it may be concluded that the majority rural farmers of the Barind tract of Bangladesh had a very good knowledge and medium extension contact related to agroforestry production system. It was also observed that 85 per cent farmers followed agroforestry production system and received benefits to a higher extent. Again, from the research study on orchard based mutistoried agroforestry cropping system, it was evident that there was an important effect of agroforestry cropping systems on the improvement of soil chemical properties. As a result, the agroforestry systems may be helpful to attain the development objectives and preserve the biosphere core.Keywords: agroforestry systems, Barind tract, carbon sequestration, climate changes
Procedia PDF Downloads 2001448 Development of a Multi-Locus DNA Metabarcoding Method for Endangered Animal Species Identification
Authors: Meimei Shi
Abstract:
Objectives: The identification of endangered species, especially simultaneous detection of multiple species in complex samples, plays a critical role in alleged wildlife crime incidents and prevents illegal trade. This study was to develop a multi-locus DNA metabarcoding method for endangered animal species identification. Methods: Several pairs of universal primers were designed according to the mitochondria conserved gene regions. Experimental mixtures were artificially prepared by mixing well-defined species, including endangered species, e.g., forest musk, bear, tiger, pangolin, and sika deer. The artificial samples were prepared with 1-16 well-characterized species at 1% to 100% DNA concentrations. After multiplex-PCR amplification and parameter modification, the amplified products were analyzed by capillary electrophoresis and used for NGS library preparation. The DNA metabarcoding was carried out based on Illumina MiSeq amplicon sequencing. The data was processed with quality trimming, reads filtering, and OTU clustering; representative sequences were blasted using BLASTn. Results: According to the parameter modification and multiplex-PCR amplification results, five primer sets targeting COI, Cytb, 12S, and 16S, respectively, were selected as the NGS library amplification primer panel. High-throughput sequencing data analysis showed that the established multi-locus DNA metabarcoding method was sensitive and could accurately identify all species in artificial mixtures, including endangered animal species Moschus berezovskii, Ursus thibetanus, Panthera tigris, Manis pentadactyla, Cervus nippon at 1% (DNA concentration). In conclusion, the established species identification method provides technical support for customs and forensic scientists to prevent the illegal trade of endangered animals and their products.Keywords: DNA metabarcoding, endangered animal species, mitochondria nucleic acid, multi-locus
Procedia PDF Downloads 1401447 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5771446 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data
Authors: Abhisek Chakrabarty, Subhraprakash Mandal
Abstract:
Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin
Procedia PDF Downloads 3171445 Innovation Management in E-Health Care: The Implementation of New Technologies for Health Care in Europe and the USA
Authors: Dariusz M. Trzmielak, William Bradley Zehner, Elin Oftedal, Ilona Lipka-Matusiak
Abstract:
The use of new technologies should create new value for all stakeholders in the healthcare system. The article focuses on demonstrating that technologies or products typically enable new functionality, a higher standard of service, or a higher level of knowledge and competence for clinicians. It also highlights the key benefits that can be achieved through the use of artificial intelligence, such as relieving clinicians of many tasks and enabling the expansion and greater specialisation of healthcare services. The comparative analysis allowed the authors to create a classification of new technologies in e-health according to health needs and benefits for patients, doctors, and healthcare systems, i.e., the main stakeholders in the implementation of new technologies and products in healthcare. The added value of the development of new technologies in healthcare is diagnosed. The work is both theoretical and practical in nature. The primary research methods are bibliographic analysis and analysis of research data and market potential of new solutions for healthcare organisations. The bibliographic analysis is complemented by the author's case studies of implemented technologies, mostly based on artificial intelligence or telemedicine. In the past, patients were often passive recipients, the end point of the service delivery system, rather than stakeholders in the system. One of the dangers of powerful new technologies is that patients may become even more marginalised. Healthcare will be provided and delivered in an increasingly administrative, programmed way. The doctor may also become a robot, carrying out programmed activities - using 'non-human services'. An alternative approach is to put the patient at the centre, using technologies, products, and services that allow them to design and control technologies based on their own needs. An important contribution to the discussion is to open up the different dimensions of the user (carer and patient) and to make them aware of healthcare units implementing new technologies. The authors of this article outline the importance of three types of patients in the successful implementation of new medical solutions. The impact of implemented technologies is analysed based on: 1) "Informed users", who are able to use the technology based on a better understanding of it; 2) "Engaged users" who play an active role in the broader healthcare system as a result of the technology; 3) "Innovative users" who bring their own ideas to the table based on a deeper understanding of healthcare issues. The authors' research hypothesis is that the distinction between informed, engaged, and innovative users has an impact on the perceived and actual quality of healthcare services. The analysis is based on case studies of new solutions implemented in different medical centres. In addition, based on the observations of the Polish author, who is a manager at the largest medical research institute in Poland, with analytical input from American and Norwegian partners, the added value of the implementations for patients, clinicians, and the healthcare system will be demonstrated.Keywords: innovation, management, medicine, e-health, artificial intelligence
Procedia PDF Downloads 201444 Leadership in the Era of AI: Growing Organizational Intelligence
Authors: Mark Salisbury
Abstract:
The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker
Procedia PDF Downloads 431443 Comparison of Surface Hardness of Filling Material Glass Ionomer Cement Which Soaked in Alcohol Containing Mouthwash and Alcohol-Free Mouthwash
Authors: Farid Yuristiawan, Aulina R. Rahmi, Detty Iryani, Gunawan
Abstract:
Glass ionomer cement is one of the filling material that often used in the field of dentistry because it is relatively less expensive and mostly available. Surface hardness is one of the most important properties of restoration material; it is the ability of material to stand against indentation, which is directly connected to the material compressive strength and its ability to withstand abrasion. The higher surface hardness of a material means it is better to withstand abrasion. The existence of glass ionomer cement in the mouth makes it susceptible to any substance that comes into mouth, one of them is mouthwash which is a solution that used for many purposes such as antiseptic, astringent, to prevent caries, and bad breath. The presence of alcohol in mouthwash could affect the properties of glass ionomer cement, surface hardness. Objective: To determine the comparison of surface hardness of glass ionomer cement which soaked in alcohol containing mouthwash and alcohol-free mouthwash. Methods: This research is a laboratory experimental type study. There were 30 samples made from GC FUJI IX GP EXTRA and then soaked in artificial saliva for the first 24 hours inside incubator which temperature and humidity were controlled. Samples then divided into three groups. The first group will be soaked in alcohol-containing mouthwash; second group will be soaked alcohol-free mouthwash and control group will be soaked in artificial saliva for 6 hours inside incubator. Listerine is the mouthwash that was used on this research and surface hardness was examined using Vickers Hardness Tester. The result of this research shows mean value for surface hardness of the first group is 16.36 VHN, 24.04 VHN for second group, and 43.60 VHN for control group. The result one way ANOVA with post hoc Bonferroni comparing test show significant results p = 0.00. Conclusions: The data showed there were statistically significant differences of surface hardness between each group, which surface hardness of the first group is lower than the second group, and both surface hardness of the first (alcohol mouthwash) and second group (alcohol-free mouthwash) are lowered than control group (p = 0.00).Keywords: glass ionomer cement, mouthwash, surface hardness, Vickers hardness tester
Procedia PDF Downloads 2241442 Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction
Authors: Abdelrhman Elagez, Rolla Monib
Abstract:
This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.Keywords: risk management, construction, artificial intelligence, technology
Procedia PDF Downloads 991441 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 821440 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 171439 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 1661438 The Efficacy of Box Lesion+ Procedure in Patients with Atrial Fibrillation: Two-Year Follow-up Results
Authors: Oleg Sapelnikov, Ruslan Latypov, Darina Ardus, Samvel Aivazian, Andrey Shiryaev, Renat Akchurin
Abstract:
OBJECTIVE: MAZE procedure is one of the most effective surgical methods in atrial fibrillation (AF) treatment. Nowadays we are all aware of its modifications. In our study we conducted clinical analysis of “Box lesion+” approach during MAZE procedure in two-year follow-up. METHODS: We studied the results of the open-heart on-pump procedures performed in our hospital from 2017 to 2018 years. Thirty-two (32) patients with atrial fibrillation (AF) were included in this study. Fifteen (15) patients had concomitant coronary bypass grafting and seventeen (17) patients had mitral valve repair. Mean age was 62.3±8.7 years; prevalence of men was admitted (56.1%). Mean duration of AF was 4.75±5.44 and 7.07±8.14 years. In all cases, we performed endocardial Cryo-MAZE procedure with one-time myocardium revascularization or mitral-valve surgery. All patients of this study underwent pulmonary vein (PV) isolation and ablation of mitral isthmus with additional isolation of LA posterior wall (Box-lesion+ procedure). Mean follow-up was 2 years. RESULTS: All cases were performed without any complications. Additional isolation of posterior wall did not prolong the operative time and artificial circulation significantly. Cryo-MAZE procedure directly lasted 20±2.1 min, the whole operation time was 192±24 min and artificial circulation time was 103±12 min. According to design of the study, we performed clinical investigation of the patients in 12 months and in 2 years from the initial procedure. In 12 months, the number of AF free patients 81.8% and 75.8% in two years of follow-up. CONCLUSIONS: Isolation of the left atrial posterior wall and perimitral area may considerably improve the efficacy of surgical treatment, which was demonstrated in significant decrease of AF recurrences during the whole period of follow-up.Keywords: atrial fibrillation, cryoablation, left atrium isolation, open heart procedure
Procedia PDF Downloads 1271437 Runoff Estimates of Rapidly Urbanizing Indian Cities: An Integrated Modeling Approach
Authors: Rupesh S. Gundewar, Kanchan C. Khare
Abstract:
Runoff contribution from urban areas is generally from manmade structures and few natural contributors. The manmade structures are buildings; roads and other paved areas whereas natural contributors are groundwater and overland flows etc. Runoff alleviation is done by manmade as well as natural storages. Manmade storages are storage tanks or other storage structures such as soakways or soak pits which are more common in western and European countries. Natural storages are catchment slope, infiltration, catchment length, channel rerouting, drainage density, depression storage etc. A literature survey on the manmade and natural storages/inflow has presented percentage contribution of each individually. Sanders et.al. in their research have reported that a vegetation canopy reduces runoff by 7% to 12%. Nassif et el in their research have reported that catchment slope has an impact of 16% on bare standard soil and 24% on grassed soil on rainfall runoff. Infiltration being a pervious/impervious ratio dependent parameter is catchment specific. But a literature survey has presented a range of 15% to 30% loss of rainfall runoff in various catchment study areas. Catchment length and channel rerouting too play a considerable role in reduction of rainfall runoff. Ground infiltration inflow adds to the runoff where the groundwater table is very shallow and soil saturates even in a lower intensity storm. An approximate percent contribution through this inflow and surface inflow contributes to about 2% of total runoff volume. Considering the various contributing factors in runoff it has been observed during a literature survey that integrated modelling approach needs to be considered. The traditional storm water network models are able to predict to a fair/acceptable degree of accuracy provided no interaction with receiving water (river, sea, canal etc), ground infiltration, treatment works etc. are assumed. When such interactions are significant then it becomes difficult to reproduce the actual flood extent using the traditional discrete modelling approach. As a result the correct flooding situation is very rarely addressed accurately. Since the development of spatially distributed hydrologic model the predictions have become more accurate at the cost of requiring more accurate spatial information.The integrated approach provides a greater understanding of performance of the entire catchment. It enables to identify the source of flow in the system, understand how it is conveyed and also its impact on the receiving body. It also confirms important pain points, hydraulic controls and the source of flooding which could not be easily understood with discrete modelling approach. This also enables the decision makers to identify solutions which can be spread throughout the catchment rather than being concentrated at single point where the problem exists. Thus it can be concluded from the literature survey that the representation of urban details can be a key differentiator to the successful understanding of flooding issue. The intent of this study is to accurately predict the runoff from impermeable areas from urban area in India. A representative area has been selected for which data was available and predictions have been made which are corroborated with the actual measured data.Keywords: runoff, urbanization, impermeable response, flooding
Procedia PDF Downloads 2501436 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 661435 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India
Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao
Abstract:
It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon
Procedia PDF Downloads 3331434 Enhancing Efficiency of Building through Translucent Concrete
Authors: Humaira Athar, Brajeshwar Singh
Abstract:
Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete
Procedia PDF Downloads 1281433 Potential Enhancement of Arsenic Removal Filter Commonly Used in South Asia: A Review
Authors: Sarthak Karki, Haribansha Timalsina
Abstract:
Kanchan Arsenic Filter is an economical low cost and termed the most efficient arsenic removal filter system in South Asian countries such as Nepal. But when the effluent quality was evaluated, it was seen to possess a lower removal rate of arsenite species. In addition to that, greater pathogenic growth and loss in overall efficacy with time due to precipitation of iron sulphates were the further complications. This brings the health issue on the front line as millions of people rely on groundwater sources for general water necessities. With this paper, we analyzed the mechanisms and changes in the efficiency of the extant filter system when integrated with activated laterite and hair column beds, plus an additional charcoal layer for inhibiting pathogen colonies. Hair column have rich keratin protein that binds with arsenic species, and similarly, raw laterite has huge deposits of iron and aluminum, all of these factors helping to remove heavy metal contaminants from water sources. Further study on the commercialized mass production of the new proposed filter and versatility analysis is required.Keywords: laterite, charcoal, arsenic removal, hair column
Procedia PDF Downloads 881432 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.Keywords: artificial intelligence, architecture, e-learning, software engineering, processing
Procedia PDF Downloads 1911431 African Personhood and the Regulation of Brain-Computer Interface (BCI) Technologies: A South African view
Authors: Meshandren Naidoo, Amy Gooden
Abstract:
Implantable brain-computer interface (BCI) technologies have developed to the point where brain-computer communication is possible. This has great potential in the medical field, as it allows persons who have lost capacities. However, ethicists and regulators call for a strict approach to these technologies due to the impact on personhood. This research demonstrates that the personhood debate is more nuanced and that where an African approach to personhood is used, it may produce results more favorable to the development and use of this technology.Keywords: artificial intelligence, law, neuroscience, ethics
Procedia PDF Downloads 1311430 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1151429 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1271428 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance
Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu
Abstract:
Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.Keywords: artificial intelligence, facial recognition, natural language processing, internet of things
Procedia PDF Downloads 354