Search results for: PM machinesautonomous agricultural machines
1425 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility
Authors: Etienne Provencal, David L. St-Pierre
Abstract:
A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.Keywords: EGM, linear regression, model prediction, slot operations
Procedia PDF Downloads 2551424 Characterization of Soil Microbial Communities from Vineyard under a Spectrum of Drought Pressures in Sensitive Area of Mediterranean Region
Authors: Gianmaria Califano, Júlio Augusto Lucena Maciel, Olfa Zarrouk, Miguel Damasio, Jose Silvestre, Ana Margarida Fortes
Abstract:
Global warming, with rapid and sudden changes in meteorological conditions, is one of the major constraints to ensuring agricultural and crop resilience in the Mediterranean regions. Several strategies are being adopted to reduce the pressure of drought stress on grapevines at regional and local scales: improvements in the irrigation systems, adoption of interline cover crops, and adaptation of pruning techniques. However, still, more can be achieved if also microbial compartments associated with plants are considered in crop management. It is known that the microbial community change according to several factors such as latitude, plant variety, age, rootstock, soil composition and agricultural management system. Considering the increasing pressure of the biotic and abiotic stresses, it is of utmost necessity to also evaluate the effects of drought on the microbiome associated with the grapevine, which is a commercially important crop worldwide. In this study, we characterize the diversity and the structure of the microbial community under three long-term irrigation levels (100% ETc, 50% ETc and rain-fed) in a drought-tolerant grapevine cultivar present worldwide, Syrah. To avoid the limitations of culture-dependent methods, amplicon sequencing with target primers for bacteria and fungi was applied to the same soil samples. The use of the DNeasy PowerSoil (Qiagen) extraction kit required further optimization with the use of lytic enzymes and heating steps to improve DNA yield and quality systematically across biological treatments. Target regions (16S rRNA and ITS genes) of our samples are being sequenced with Illumina technology. With bioinformatic pipelines, it will be possible to obtain a characterization of the bacterial and fungal diversity, structure and composition. Further, the microbial communities will be assessed for their functional activity, which remains an important metric considering the strong inter-kingdom interactions existing between plants and their associated microbiome. The results of this study will lay the basis for biotechnological applications: in combination with the establishment of a bacterial library, it will be possible to explore the possibility of testing synthetic microbial communities to support plant resistance to water scarcity.Keywords: microbiome, metabarcoding, soil, vinegrape, syrah, global warming, crop sustainability
Procedia PDF Downloads 1231423 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company
Authors: Farzad Jafarpour Taher, Maghsud Solimanpur
Abstract:
Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.Keywords: multi-period, multi-product production, multi-stage, production planning
Procedia PDF Downloads 981422 Studying the Impact of Agricultural Producers Support Policy in Export Market
Authors: Yazdani Saeed, Rafiei Hamed, Nekoofar Farahnaz
Abstract:
Governments Policies play a major role in national and international Markets. Pistachio is one of the most important non-oil export commodity of Iran. Therefore, in this study the relation between the producer support policies and the export of Pistachio was examined. An econometric model (VAR) was applied to test the study hypothesis. According to the estimated coefficient in VAR model, lag of producer support index has a significant and negative effect on variation of Pistachio’s export in short term. In other word, in short term, export advantage index is dependent on the amount of producers support in previous period.Keywords: producer support, export advantage, pistachio, Iran
Procedia PDF Downloads 481421 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 731420 On the Development of Medical Additive Manufacturing in Egypt
Authors: Khalid Abdelghany
Abstract:
Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants
Procedia PDF Downloads 3151419 Study on Municipal Solid Waste Management to Protect Environment
Authors: Rajesh Kumar
Abstract:
The largest issue in the current situation is managing solid waste since it pollutes the ecosystem. When considering how to manage waste, even the disposal of mixed waste is a challenge. The Saksham Yuva Project, which is managed by the Haryana government, highlights the consequences and drivers of managing the solid waste of urban areas in the municipal committee pundri in the present study. The overall goal of the Saksham Yuva project is to mobilise the public and educate them about the dangers associated with garbage management. There has been a 20% reduction in waste, according to the study's impacts, and the cost of waste management has also gone down. Further, the study also reported the alternative use of wastes in revenue generation by generating Khaad for agricultural purposes.Keywords: solid waste management, people awareness, dry and wet waste disposal, material recover facility
Procedia PDF Downloads 1111418 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 2051417 Purification of Bacillus Lipopeptides for Diverse Applications
Authors: Vivek Rangarajan, Kim G. Clarke
Abstract:
Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC
Procedia PDF Downloads 2051416 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4091415 Economic Impact of Drought on Agricultural Society: Evidence Based on a Village Study in Maharashtra, India
Authors: Harshan Tee Pee
Abstract:
Climate elements include surface temperatures, rainfall patterns, humidity, type and amount of cloudiness, air pressure and wind speed and direction. Change in one element can have an impact on the regional climate. The scientific predictions indicate that global climate change will increase the number of extreme events, leading to more frequent natural hazards. Global warming is likely to intensify the risk of drought in certain parts and also leading to increased rainfall in some other parts. Drought is a slow advancing disaster and creeping phenomenon– which accumulate slowly over a long period of time. Droughts are naturally linked with aridity. But droughts occur over most parts of the world (both wet and humid regions) and create severe impacts on agriculture, basic household welfare and ecosystems. Drought condition occurs at least every three years in India. India is one among the most vulnerable drought prone countries in the world. The economic impacts resulting from extreme environmental events and disasters are huge as a result of disruption in many economic activities. The focus of this paper is to develop a comprehensive understanding about the distributional impacts of disaster, especially impact of drought on agricultural production and income through a panel study (drought year and one year after the drought) in Raikhel village, Maharashtra, India. The major findings of the study indicate that cultivating area as well as the number of cultivating households reduced after the drought, indicating a shift in the livelihood- households moved from agriculture to non-agriculture. Decline in the gross cropped area and production of various crops depended on the negative income from these crops in the previous agriculture season. All the landholding categories of households except landlords had negative income in the drought year and also the income disparities between the households were higher in that year. In the drought year, the cost of cultivation was higher for all the landholding categories due to the increased cost for irrigation and input cost. In the drought year, agriculture products (50 per cent of the total products) were used for household consumption rather than selling in the market. It is evident from the study that livelihood which was based on natural resources became less attractive to the people to due to the risk involved in it and people were moving to less risk livelihood for their sustenance.Keywords: climate change, drought, agriculture economics, disaster impact
Procedia PDF Downloads 1181414 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation
Procedia PDF Downloads 2061413 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells
Authors: Victorita Radulescu
Abstract:
Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils
Procedia PDF Downloads 1551412 Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine
Authors: H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno-Mariani, S. Mollov, N. Voyer
Abstract:
This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM.Keywords: finite element method (FEM), machine performance, modular wound rotor synchronous machine, non-overlapping concentrated winding
Procedia PDF Downloads 2901411 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 731410 The Relationship between Land Use Change and Runoff
Authors: Thanutch Sukwimolseree, Preeyaphorn Kosa
Abstract:
Many problems are occurred in watershed due to human activity and economic development. The purpose is to determine the effects of the land use change on surface runoff using land use map on 1980, 2001 and 2008 and daily weather data during January 1, 1979 to September 30, 2010 applied to SWAT. The results can be presented that the polynomial equation is suitable to display that relationship. These equations for land use in 1980, 2001 and 2008 are consisted of y = -0.0076x5 + 0.1914x4–1.6386x3 + 6.6324x2–8.736x + 7.8023(R2 = 0.9255), y = -0.0298x5 + 0.8794x4 - 9.8056x3 + 51.99x2 - 117.04x + 96.797; (R2 = 0.9186) and y = -0.0277x5 + 0.8132x4 - 8.9598x3 + 46.498x2–101.83x +81.108 (R2 = 0.9006), respectively. Moreover, if the agricultural area is the largest area, it is a sensitive parameter to concern surface runoff.Keywords: land use, runoff, SWAT, upper Mun River basin
Procedia PDF Downloads 3741409 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 261408 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator
Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh
Abstract:
Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.Keywords: environmental industry, separator, CFD, fine aggregate
Procedia PDF Downloads 5951407 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model
Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You
Abstract:
The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.Keywords: DBSCAN, potential function, speech signal, the UBSS model
Procedia PDF Downloads 1351406 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation
Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos
Abstract:
A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.Keywords: rainfall, runoff, hydrologic design, PMF
Procedia PDF Downloads 2541405 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4801404 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing
Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin
Abstract:
Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling
Procedia PDF Downloads 4421403 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls
Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello
Abstract:
Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.Keywords: adsorption, crystal violet dye, groundnut halls, kinetics
Procedia PDF Downloads 3751402 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 1971401 Optimal Applications of Solar Energy Systems: Comparative Analysis of Ground-Mounted and Rooftop Solar PV Installations in Drought-Prone and Residential Areas of the Indian Subcontinent
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhyay
Abstract:
The increasing demand for environmentally friendly energy solutions highlights the need to optimize solar energy systems. This study compares two types of solar energy systems: ground-mounted solar panels for drought-prone locations and rooftop solar PV installations measuring 300 sq. ft. (approx. 28 sq. m.). The electricity output of 4730 kWh/year saves ₹ 14191/year. As a clean and sustainable energy source, solar power is pivotal in reducing greenhouse gas CO2 emissions reduction by 85 tonnes in 25 years and combating climate change. This effort, "PM Suryadaya Ghar-Muft Bijli Yojana," seeks to empower Indian homes by giving free access to solar energy. The initiative is part of the Indian government's larger attempt to encourage clean and renewable energy sources while reducing reliance on traditional fossil fuels. This report reviews various installations and government reports to analyse the performance and impact of both ground-mounted and rooftop solar systems. Besides, effectiveness of government subsidy programs for residential on-grid solar systems, including the ₹78,000 incentive for systems above 3 kW. The study also looks into the subsidy schemes available for domestic agricultural grid use. Systems up to 3 kW receive ₹43,764, while systems over 10 kW receive a fixed subsidy of ₹94,822. Households can save a substantial amount of energy and minimize their reliance on grid electricity by installing the proper solar plant capacity. In terms of monthly consumption at home, the acceptable Rooftop Solar Plant capacity for households is 0-150 units (1-2 kW), 150-300 units (2-3 kW), and >300 units (above 3 kW). Ground-mounted panels, particularly in arid regions, offer benefits such as scalability and optimal orientation but face challenges like land use conflicts and environmental impact, particularly in drought-prone regions. By evaluating the distinct advantages and challenges of each system, this study aims to provide insights into their optimal applications, guiding stakeholders in making informed decisions to enhance solar energy efficiency and sustainability within regulatory constraints. This research also explores the implications of regulations, such as Italy's ban on ground-mounted solar panels on productive agricultural land, on solar energy strategies.Keywords: sustainability, solar energy, subsidy, rooftop solar energy, renewable energy
Procedia PDF Downloads 471400 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis
Procedia PDF Downloads 3261399 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation
Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim
Abstract:
Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time
Procedia PDF Downloads 721398 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 2331397 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand
Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing
Abstract:
Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change
Procedia PDF Downloads 521396 Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon
Authors: G. E. Sharaf El-Deen, S. E. A. Sharaf El-Deen
Abstract:
Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic.Keywords: coconut shell, activated carbon, adsorption isotherm and kinetics, lead removal
Procedia PDF Downloads 308