Search results for: customer service performance (B2B)
3900 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR
Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid
Abstract:
Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA
Procedia PDF Downloads 4603899 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error
Procedia PDF Downloads 3273898 Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process
Authors: Wonkyung Na, Namhun Kim, Heeyeop Chae
Abstract:
Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films.Keywords: CuInS2/ZnS, electro-spinning, color conversion films, white light emitting diodes
Procedia PDF Downloads 8133897 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 6713896 Assesment of Trapping Efficiency of Slow Released Formulations of Methyl Euginol with Carnauba Wax against Bactrocera zonata
Authors: Waleed Afzal Naveed, Muhammd Dildar Gogi, Muhammad Sufian, Muhammad Junaid Nisar, Mubashir Iqbal, Hafiz Muhammad Waqas Amjad, Muhammad Hamza Khaliq
Abstract:
Present study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of methyl eugenol with Carnauba wax in orchard of University of Agriculture Faisalabad, Pakistan against fruit flies. Carnauba wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFCN-9 trapped 35.3 flies/day/trap, exhibited an attractancy index (AI) of 50.35%, proved strongly attractive SRFCN for B. zonata and was categorized as Class-III slow-released formulation (Attractive Index > 50%). The SRFCN-1, SRFCN-2, SRFCN-3, SRFCN-4, SRFCN-5, SRFCN-6, SRFCN-7 and SRFCN-8 trapped 2.0, 5.3, 3.3, 4.0, 5.7, 12.0, 9.7 and 14.3 flies/day/trap respectively exhibited an attractancy index (AI) of -70.73%, -37.25%, -55.55%, -48.93%, -34.61%, 1.40%, -9.37% and 10.25% Attractive Index respectively, proved little or non attractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (Attractive Index < 11%). Results revealed that the Slow-Released Formulation containing 10% Carnauba wax with 90% methyl eugenol trapped maximum number of flies of over 30 days.Keywords: slow-released formulation, Bactrocera zonata, Carnauba wax, methyl euginol
Procedia PDF Downloads 2653895 Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage
Authors: Abdu Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat
Abstract:
Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.Keywords: salinity, hybrids, maize, variation
Procedia PDF Downloads 7253894 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 2273893 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 1753892 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 1513891 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan
Authors: Pi-Lan Yang
Abstract:
It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading
Procedia PDF Downloads 2493890 Assessment of the Professional Competencies of Agriculture Officers in North West Frontier Province (NWFP), Pakistan
Authors: Muhammad Zafarullah Khan, Khalid Nawab, Shahid Ali, Mubashir Habib, Shakirullah Khan, Sajjad Ahmad, Javid Ullah, Ikramul Haq
Abstract:
Professionally competent Agriculture Officers (AOs) can play an important role in the development of agriculture in the country. This study was conducted in North West Frontier Province (NWFP) (Pakistan) to assess professional competencies of Agriculture Officers (AOs) in January 2007. Data were collected from all (112) AOs through a mailed questionnaire. The study examines existing level of professional competencies of AOs and the required level of possessed competencies needed by them for their job performance in the areas of participatory extension methodologies. Both the possessed and required levels of competencies were scaled from 1-5 on Liker scale, 1 being very low and 5 being very high. . The study revealed a numerical difference between possessed and required levels regarding the professional competencies of the participatory extension methodology. It was also observed that higher levels of job experience increase the professional competencies in participatory extension methodology. It is recommended that periodic training and refresher courses are arranged for AOs so that their learning may become more practicable to diffuse agricultural innovations among members of participatory learning groups and convey modern technologies to the end users.Keywords: professional competency, agriculture officers, assessment and participatory extension methodology, participatory extension
Procedia PDF Downloads 3443889 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 1653888 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices
Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner
Abstract:
Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.Keywords: biometrics, electrocardiographic, machine learning, signals processing
Procedia PDF Downloads 1443887 Corporate Environmentalism: A Case Study in the Czech Republic
Authors: Pavel Adámek
Abstract:
This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.Keywords: corporate environmentalism, Czech Republic, empirical mapping, environmental performance
Procedia PDF Downloads 3603886 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications
Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara
Abstract:
Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.Keywords: bone regeneration, chitosan, electrospinning, phosphorylation
Procedia PDF Downloads 2243885 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification
Authors: A. Elsehemy, M. Abdeen , T. Nazmy
Abstract:
Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology
Procedia PDF Downloads 5303884 Investigating the Effect of Refinancing on Financial Behaviour of Energy Efficiency Projects
Authors: Zohreh Soltani, Seyedmohammadhossein Hosseinian
Abstract:
Reduction of energy consumption in built infrastructure, through the installation of energy-efficient technologies, is a major approach to achieving sustainability. In practice, the viability of energy efficiency projects strongly depends on the cost reimbursement and profitability. These projects are subject to failure if the actual cost savings do not reimburse the project cost in a timely manner. In such cases, refinancing could be a solution to benefit from the long-term returns of the project if implemented wisely. However, very little is still known about the effect of refinancing options on financial performance of energy efficiency projects. To fill this gap, the present study investigates the financial behavior of energy efficiency projects with focus on refinancing options, such as Leveraged Loans. A System Dynamics (SD) model is introduced, and the model application is presented using an actual case-study data. The case study results indicate that while high-interest start-ups make using Leveraged Loan inevitable, refinancing can rescue the project and bring about profitability. This paper also presents some managerial implications of refinancing energy efficiency projects based on the case-study analysis. Results of this study help implementing financially viable energy efficiency projects, so the community could benefit from their environmental advantages widely.Keywords: energy efficiency projects, leveraged loan, refinancing, sustainability
Procedia PDF Downloads 3943883 Breast Cancer Therapy-Related Cardiac Dysfunction Identifying in Kazakhstan: Preliminary Findings of the Cohort Study
Authors: Saule Balmagambetova, Zhenisgul Tlegenova, Saule Madinova
Abstract:
Cardiotoxicity associated with anticancer treatment, now defined as cancer therapy-related cardiac dysfunction (CTRCD), accompanies cancer patients and negatively impacts their survivorship. Currently, a cardio-oncological service is being created in Kazakhstan based on the provisions of the European Society of Cardio-oncology (ESC) Guidelines. In the frames of a pilot project, a cohort study on CTRCD conditions was initiated at the Aktobe Cancer center. One hundred twenty-eight newly diagnosed breast cancer patients started on doxorubicin and/or trastuzumab were recruited. Echocardiography with global longitudinal strain (GLS) assessment, biomarkers panel (cardiac troponin (cTnI), brain natriuretic peptide (BNP), myeloperoxidase (MPO), galectin-3 (Gal-3), D-dimers, C-reactive protein (CRP)), and other tests were performed at baseline and every three months. Patients were stratified by the cardiovascular risks according to the ESC recommendations and allocated into the risk groups during the pre-treatment visit. Of them, 10 (7.8%) patients were assigned to the high-risk group, 48 (37.5%) to the medium-risk group, and 70 (54.7%) to the low-risk group, respectively. High-risk patients have been receiving their cardioprotective treatment from the outset. Patients were also divided by treatment - in the anthracycline-based 83 (64.8%), in trastuzumab- only 13 (10.2%), and in the mixed anthracycline/trastuzumab group 32 individuals (25%), respectively. Mild symptomatic CTRCD was revealed and treated in 2 (1.6%) participants, and a mild asymptomatic variant in 26 (20.5%). Mild asymptomatic conditions are defined as left ventricular ejection fraction (LVEF) ≥50% and further relative reduction in GLS by >15% from baseline and/or a further rise in cardiac biomarkers. The listed biomarkers were assessed longitudinally in repeated-measures linear regression models during 12 months of observation. The associations between changes in biomarkers and CTRCD and between changes in biomarkers and LVEF were evaluated. Analysis by risk groups revealed statistically significant differences in baseline LVEF scores (p 0.001), BNP (p 0.0075), and Gal-3 (p 0.0073). Treatment groups found no statistically significant differences at baseline. After 12 months of follow-up, only LVEF values showed a statistically significant difference by risk groups (p 0.0011). When assessing the temporal changes in the studied parameters for all treatment groups, there were statistically significant changes from visit to visit for LVEF (p 0.003); GLS (p 0.0001); BNP (p<0.00001); MPO (p<0.0001); and Gal-3 (p<0.0001). No moderate or strong correlations were found between the biomarkers values and LVEF, between biomarkers and GLS. Between the biomarkers themselves, a moderate, close to strong correlation was established between cTnI and D-dimer (r 0.65, p<0.05). The dose-dependent effect of anthracyclines has been confirmed: the summary dose has a moderate negative impact on GLS values: -r 0.31 for all treatment groups (p<0.05). The present study found myeloperoxidase as a promising biomarker of cardiac dysfunction in the mixed anthracycline/trastuzumab treatment group. The hazard of CTRCD increased by 24% (HR 1.21; 95% CI 1.01;1.73) per doubling in baseline MPO value (p 0.041). Increases in BNP were also associated with CTRCD (HR per doubling, 1.22; 95% CI 1.12;1.69). No cases of chemotherapy discontinuation due to cardiotoxic complications have been recorded. Further observations are needed to gain insight into the ability of biomarkers to predict CTRCD onset.Keywords: breast cancer, chemotherapy, cardiotoxicity, Kazakhstan
Procedia PDF Downloads 953882 Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds
Authors: Soo Hyung Park, Seong Beom Kim, Wontae Lee, Jin Chul Joo, Jungmin Lee, Jongsoo Choi
Abstract:
A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME.Keywords: electromagnetic vibration, organic compounds, precision, solid-phase microextraction (SPME), sorption equilibrium time
Procedia PDF Downloads 2563881 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3343880 Comparing Student Performance on Standardized Tests at Test Center versus through Online-Proctored Delivery
Authors: Jin Koo
Abstract:
The main purpose of this study is to investigate the comparability of student scores obtained from Test Center (TC) vs. Online-Proctored (OP) Delivery in the three subject areas of Verbal, Reading, and Mathematics for each level (Middle and Upper). Also, this study examines whether there is an interaction effect between test deliveries (TC vs. OP) and gender/ethnicity/ability level in each subject area. The test used in this study is a multiple-choice standardized test for students in grades 5-11. For this study, data were collected during the 2022-23 test administration. This research used a one-factor between-subjects ANOVA and Cohen’s d to compare the TC and OP groups’ test means for each level and each subject area. Also, 2-factor between-subjects ANOVAs were conducted to investigate examinee characteristics: gender (male and female), ethnicity (African-American, Asian, Hispanic, Multi-racial, and White), and ability level (low, average, and high-ability groups). The author found that students’ test scores in some subject areas varied between TC and OP test deliveries by gender, ethnicity, and ability level, meaning that gender, ethnicity, and ability level were related to the score difference. These results will be discussed according to the current testing systems.Keywords: ability level, ethnicity, gender, online-proctored delivery, standardized test, test center
Procedia PDF Downloads 563879 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario
Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis
Abstract:
With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain
Procedia PDF Downloads 1793878 Light-Emitting Diode Assisted Synthesis of Ag@Fe3O4 Nanoparticles and Their Application in Magnetic and Photothermal Hyperthermia Therapy
Authors: Pei-Wen Lin, Ta-I Yang
Abstract:
Cancer has been one of the leading causes of human death for centuries. Considerable effort has been devoted to developing new treatments to reduce and control cancers. Magnetic particle hyperthermia and near-infrared photothermal therapy are the promising strategies to treat cancers due to its effectiveness with only mild side effects. This study focused on synthesizing magnetic Ag@Fe3O4 nanoparticles applicable for both of magnetic hyperthermia and near-infrared photothermal therapy. The hydrophilic poly(diallyldimethylammonium chloride) polymer was utilized to prepare superparamagnetic Fe3O4 clusters and to promote silver nanoparticles grown on Fe3O4 surfaces, obtaining Ag@Fe3O4 nanoparticles. The morphology (shape and dimension) of Ag nanoparticles was subsequently tailored using commercial LED lights. Therefore, the resulting Ag@Fe3O4 nanoparticles can absorb specific wavelength of light ranging from 400 nm to 800 nm by adjusting the wavelength of LED lights and the free silver ions in reaction solution. Heating performance tests confirmed that the synthesized Ag@Fe3O4 nanoparticles show appreciable heating capability for both of magnetic particle hyperthermia and near-infrared photothermal therapy. The findings in this study could provide new ideas to design functional materials to treat cancers.Keywords: light-emitting diode assisted synthesis, magnetic particles, photothermal materials, hyperthermia
Procedia PDF Downloads 2873877 Inhibition of the Corrosion of Copper in 0.5 NaCl Solutions by Aqueous Extract and Hydrolysis Acid of Olive Leaf Extract
Authors: Chahla Rahal, Philippe Refait
Abstract:
Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.Keywords: olive leaf extract, oleuropein, voltammetry, copper, corrosion, HPLC, EIS
Procedia PDF Downloads 3033876 Simplifying Health Risk Assessment (HRA) and Its Operationalisation for Turnaround Activities
Authors: Thirumila Muthukamaru
Abstract:
The objective of a Health Risk Assessment (HRA) is to achieve a quality evaluation of risk assessments in a timely manner where adequate controls can be in place to protect workers health, especially during turnarounds where the exposure to health hazards is expected to rise during the performance of the many activities that take place, exposing workers to health risk. HRA development requires a competent team comprising experienced subject matter experts in the field, such as Industrial hygienists, Occupational Health Doctors, Turnaround Coordinators, Operation / Maintenance personnel, etc. The conventional way of conducting HRA is not only tedious and time-consuming but also less appreciated when it is not interpreted correctly, which may contribute to inadequate operationalization of it. Simplification can be the essence of timely intervention in managing health risks. This paper is intended as a sharing of the approach taken to simplify the methodology of developing the HRA report and operationalizing it. The approach includes developing a Generic HRA for turnaround activities to be used as a reference document and the empowerment of identified personnel through upskilling sessions to take up the role of facilitating HRA sessions. This empowerment is one of the key approaches towards the successful translation of the HRA into specific turnaround Job Hazard Analysis (JHA) that embed it in the Permit to Work (PTW) process. The approach used here increases awareness and compliance on HRA for turnaround activities through better interpretation and operationalization of the HRA report, adding value to the risk assessment for turnaround activities.Keywords: industrial hygiene, health risk assessment, HRA, risk assessment
Procedia PDF Downloads 553875 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent
Authors: Kwame Amoah
Abstract:
Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence
Procedia PDF Downloads 873874 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images
Authors: Tian Zhang
Abstract:
Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment
Procedia PDF Downloads 1133873 Estimation of Cholesterol Level in Different Brands of Vegetable Oils in Iraq
Authors: Mohammed Idaan Hassan Al-Majidi
Abstract:
An analysis of twenty one assorted brands of vegetable oils in Babylon Iraq, reveals varying levels of cholesterol content. Cholesterol was found to be present in most of the oil brands sampled using three standard methods. Cholesterol was detected in seventeen of the vegetable oil brands with concentration of less than 1 mg/ml while seven of the oil brands had cholesterol concentrations ranging between 1-4 mg/ml. Low iodine values were obtained in four of the vegetable oil brands and three of them had high acid values. High performance liquid chromatography (HPLC) confirmed the presence of cholesterol at varying concentrations in all the oil brands and gave the lowest detectable cholesterol values in all the oil brands. The Laser brand made from rapeseed had the highest cholesterol concentration of 3.2 mg/ml while Grand brand made from groundnuts had the least concentration (0.12 mg/ml) of cholesterol using HPLC analysis. Leibermann-Burchard method showed that Gino brand from palm kernel had the least concentration of cholesterol (3.86 mg/ml ±0.032) and the highest concentration of 3.996 mg/ml ±0.0404 was obtained in Sesame seed oil brand. This report is important in view of health implications of cholesterol in our diets. Consequently, we have been able to show that there is no cholesterol free oil in the market as shown on the vegetable oil brand labels. Therefore, companies producing and marketing vegetable oils are enjoined to desist from misleading the public by labeling their products as “cholesterol free”. They should indicate the amount of cholesterol present in the vegetable oil, no matter how small the quantity may be.Keywords: vegetable oils, heart diseases, leibermann-burchard, cholesterol
Procedia PDF Downloads 2603872 An Antifungal Peptide from Actinobacteria (Streptomyces Sp. TKJ2): Isolation and Partial Characterization
Authors: Abdelaziz Messis, Azzeddine Bettache, Nawel Boucherba, Said Benallaoua, Mouloud Kecha
Abstract:
Actinobacteria are of special biotechnological interest since they are known to produce chemically diverse compounds with a wide range of biological activity. This distinct clade of Gram-positve bacteria include some of the key antibiotic producers and are also sources of several bioactive compounds, established commercially a newly filamentous bacteria was recovered from Tikjda forest soil (Algeria) for its high antifungal activity against various pathogenic and phytopathogenic fungi. The nucleotide sequence of the 16S rRNA gene (1454 pb) of Streptomyces sp. TKJ2 exhibited close similarity (99 %) with other Streptomyces16S rRNA genes. Antifungal metabolite production of Streptomyces sp TKJ2 was evaluated using six different fermentation media. The extracellular products contained potent antifungal agents. Antifungal protein produced by Streptomyces sp. TKJ2 on PCA medium has been purified by ammonium sulfate precipitation, SPE column chromatography and high-performance liquid chromatography in a reverse-phase column. The UV chromatograms of the active fractions obtained at 214 nm by NanoLC-ESI-MS/MS have different molecular weights. The F20 Peptidic fraction obtained from culture filtrat of Streptomyces sp. TKJ2 precipitated at 30% of ammonium sulfate was selected for analysis by infusion ESI-MS which yielded a singly charged ion mass of 437.17 Da.Keywords: actinobacteria, antifungal protein, chromatography, Streptomyces
Procedia PDF Downloads 3853871 Possibilities and Challenges of Using Machine Translation in Foreign Language Education
Authors: Miho Yamashita
Abstract:
In recent years, there have been attempts to introduce Machine Translation (MT) into foreign language teaching, especially in writing instructions. This is because the performance of neural machine translation has improved dramatically since 2016, and some university instructors started to introduce MT translations to their students as a "good model" to learn from. However, MT is still not perfect, and there are many incorrect translations. In order to translate the intended text into a foreign language, it is necessary to edit the original manuscript written in the native language (pre-edit) and revise the translated foreign language text (post-edit). The latter is considered especially difficult for users without a high proficiency level of foreign language. Therefore, the author allowed her students to use MT in her writing class in one of the private universities in Japan and investigated 1) how groups of students with different English proficiency levels revised MT translations when translating Japanese manuscripts into English and 2) whether the post-edit process differed when the students revised alone or in pairs. The results showed that in 1), certain non-post-edited grammatical errors were found regardless of their proficiency levels, indicating the need for teacher intervention, and in 2), more appropriate corrections were found in pairs, and their frequent use of a dictionary was also observed. In this presentation, the author will discuss how MT writing instruction can be integrated effectively in an aim to achieve multimodal foreign language education.Keywords: machine translation, writing instruction, pre-edit, post-edit
Procedia PDF Downloads 66