Search results for: energy conversion systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16402

Search results for: energy conversion systems

4072 Studies on Dye Removal by Aspergillus niger Strain

Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy

Abstract:

For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.

Keywords: biomass, biosorption, dye, isotherms

Procedia PDF Downloads 301
4071 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 188
4070 Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007

Authors: S. Boorboor, S. A. H. Feghhi, H. Jafari

Abstract:

The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today’s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from ID-VG characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems.

Keywords: threshold voltage shift, MOS transistor, linear extrapolation, gamma irradiation

Procedia PDF Downloads 277
4069 The Ecological Urbanism as an Oppurtunity to Solve City Problem

Authors: Fairuz A. Ulinnuha, Bimo K. Fuadi

Abstract:

The world’s population continues to grow resulting in steady migration from rural to urban areas. Increased numbers of people and cities hand in hand with greater exploitation of world’s resource. Every year, more cities are feeling the devastating of this impact of this situation. During the 1970’s, some of eco-concept were applied to urban settings, one of them is Ecological Cities. A non-profit organization, Urban Ecology, was founded in California in 1975 to 'rebuild cities in balance with nature'. Efforts to synthesize ecological and urban planning approaches were slowed somewhat in the 1980s, but useful refinements were made. Consideration of social impact acknowledges that the ecological design is not just about ecology itself. It is also about questioning and redefining our understanding of the ecology. When ecologist did recognize the existence of cities, they were usually concerned with resource flows. One popular approach was to study the flow and transformation of energy through urban ecosystem. This research method is descriptive method, following LEED Certification which is the international standard of the sustainable building, is more widely applied. But there remains problem that the moral imperative of sustainability and by implication of sustainable design, tends to supplant the disciplinary contribution. Sustainable design is not always seen as design excellence or design innovation. This can provoke the skepticism and cause the tension those who promote disciplinary knowledge and those who push for sustainability. The challenges of rapid urbanization and limited of global resources has become more pressing. So, there is a need to find an alternative design approaches. The urban, as the site of complex relation (economy, political, social, cultural), need a complex problem solving that can solve current and future condition. The aim of this study is to discussed about conjoining of ecology such as public park and sustainable design.

Keywords: ecology, cities, urban, sustainability

Procedia PDF Downloads 131
4068 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 486
4067 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 120
4066 Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline

Authors: Krishna Prasad Maity, Narendra Tanty, Ananya Patra, V. Prasad

Abstract:

Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.

Keywords: coulomb interaction, magnetoresistance transition, polyaniline composite, polaron-bipolaron

Procedia PDF Downloads 158
4065 Estimation of Implicit Colebrook White Equation by Preferable Explicit Approximations in the Practical Turbulent Pipe Flow

Authors: Itissam Abuiziah

Abstract:

In several hydraulic systems, it is necessary to calculate the head losses which depend on the resistance flow friction factor in Darcy equation. Computing the resistance friction is based on implicit Colebrook-White equation which is considered as the standard for the friction calculation, but it needs high computational cost, therefore; several explicit approximation methods are used for solving an implicit equation to overcome this issue. It follows that the relative error is used to determine the most accurate method among the approximated used ones. Steel, cast iron and polyethylene pipe materials investigated with practical diameters ranged from 0.1m to 2.5m and velocities between 0.6m/s to 3m/s. In short, the results obtained show that the suitable method for some cases may not be accurate for other cases. For example, when using steel pipe materials, Zigrang and Silvester's method has revealed as the most precise in terms of low velocities 0.6 m/s to 1.3m/s. Comparatively, Halland method showed a less relative error with the gradual increase in velocity. Accordingly, the simulation results of this study might be employed by the hydraulic engineers, so they can take advantage to decide which is the most applicable method according to their practical pipe system expectations.

Keywords: Colebrook–White, explicit equation, friction factor, hydraulic resistance, implicit equation, Reynolds numbers

Procedia PDF Downloads 181
4064 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 125
4063 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 564
4062 Formative Assessment in an Introductory Python Programming Course

Authors: María José Núñez-Ruiz, Luis Álvarez-González, Cristian Olivares-Rodriguez, Benjamin Lazo-Letelier

Abstract:

This paper begins with some concept of formative assessment and the relationship with learning objective: contents objectives, processes objectives, and metacognitive objectives. Two methodologies are describes Evidence-Based teaching and Question Drive Instruction. To do formative assessments in larges classes a Classroom Response System (CRS) is needed. But most of CRS use only Multiple Choice Questions (MCQ), True/False question, or text entry; however, this is insufficient to formative assessment. To do that a new CRS, call FAMA was developed. FAMA support six types of questions: Choice, Order, Inline choice, Text entry, Associated, and Slider. An experiment participated in 149 students from four engineering careers. For results, Kendall's Range Correlation Analysis and descriptive analysis was done. In conclusion, there is a strong relation between contents question, process questions (ask in formative assessment without a score) and metacognitive questions, asked in summative assessment. As future work, the lecturer can do personalized teaching, because knows the behavior of all students in each formative assessment

Keywords: Python language, formative assessment, classroom response systems, evidence-Based teaching, question drive instruction

Procedia PDF Downloads 124
4061 Safety Testing of Commercial Lithium-Ion Batteries and Failure Modes Analysis

Authors: Romeo Malik, Yashraj Tripathy, Anup Barai

Abstract:

Transportation safety is a major concern for vehicle electrification on a large-scale. The failure cost of lithium-ion batteries is substantial and is significantly impacted by higher liability and replacement cost. With continuous advancement on the material front in terms of higher energy density, upgrading safety characteristics are becoming more crucial for broader integration of lithium-ion batteries. Understanding and impeding thermal runaway is the prime issue for battery safety researchers. In this study, a comprehensive comparison of thermal runaway mechanisms for two different cathode types, Li(Ni₀.₃Co₀.₃Mn₀.₃)O₂ and Li(Ni₀.₈Co₀.₁₅Al₀.₀₅)O₂ is explored. Both the chemistries were studied for different states of charge, and the various abuse scenarios that lead to thermal runaway is investigated. Abuse tests include mechanical abuse, electrical abuse, and thermal abuse. Batteries undergo thermal runaway due to a series of combustible reactions taking place internally; this is observed as multiple jets of flame reaching temperatures of the order of 1000ºC. The physicochemical characterisation was performed on cells, prior to and after abuse. Battery’s state of charge and chemistry have a significant effect on the flame temperature profiles which is otherwise quantified as heat released. Majority of the failures during transportation is due to these external short circuit. Finally, a mitigation approach is proposed to impede the thermal runaway hazard. Transporting lithium-ion batteries under low states of charge is proposed as a way forward. Batteries at low states of charge have demonstrated minimal heat release under thermal runaway reducing the risk of secondary hazards such as thermal runaway propagation.

Keywords: battery reliability, lithium-ion batteries, thermal runaway characterisation, tomography

Procedia PDF Downloads 113
4060 A Methodology for Optimisation of Water Containment Systems

Authors: Amir Hedjripour

Abstract:

The required dewatering configuration for a contaminated sediment dam is discussed to meet no-spill criteria for a defined Average Recurrence Interval (ARI). There is an option for the sediment dam to pump the contaminated water to another storage facility before its capacity is exceeded. The system is subjected to a range of storm durations belonging to the design ARI with concurrent dewatering to the other storage facility. The model is set up in 1-minute time intervals and temporal patterns of storm events are used to de-segregate the total storm depth into partial durations. By running the model for selected storm durations, the maximum water volume in the dam is recorded as the critical volume, which indicates the required storage capacity for that storm duration. Runoff from upstream catchment and the direct rainfall over the dam open area are calculated by taking into account the time of concentration for the catchment. Total 99 different storm durations from 5 minutes to 72 hours were modelled together with five dewatering scenarios from 50 l/s to 500 l/s. The optimised dam/pump configuration is selected by plotting critical points for all cases and storage-dewatering envelopes. A simple economic analysis is also presented in the paper using Present-Value (PV) analysis to assist with the financial evaluation of each configuration and selection of the best alternative.

Keywords: contaminated water, optimisation, pump, sediment dam

Procedia PDF Downloads 361
4059 Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting

Authors: Hafiz Arbab Sakandar

Abstract:

Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health.

Keywords: gut microbiome, health, fasting, functionality

Procedia PDF Downloads 60
4058 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 71
4057 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 282
4056 Optimization of Pyrogallol Based Manganese / Ferroin Catalyzed Nonlinear Chemical Systems and Interaction with Monomeric and Polymeric Entities

Authors: Ghulam Mustafa Peerzada, Shagufta Rashid, Nadeem Bashir

Abstract:

These the influence of initial reagent concentrations on the Belousov-Zhabotinsky (BZ) system with Mn2+/Mn3+ as redox catalyst, inorganic bromate as oxidant and pyrogallol as organic substrate was studied. The reactions were monitored by potentiometery in oxidation reduction potential (ORP) mode. The aforesaid reagents were mixed with varying concentrations to evolve the optimal concentrations at which the reaction system exhibited better oscillations. The various oscillatory parameters such as induction period (tin), time period (tp), frequency (v), amplitude (A) and number of oscillations (n) were derived and the dependence of concentration of the reacting species on these oscillatory parameters was interpreted on the basis of the Field-Koros-Noyes mechanism. Ferroin based BZ system with pyrogallol as organic substrate was optimized under CSTR condition at temperature of 30±0.1oC Effect of molecules like monomer and polymer as additives to the system was checked and their interaction with the system was also studied. It has been observed that the monomer affects the time period, while the polymer has its effect on the amplitude of oscillations because of monomer’s interaction with the bromine and polymer’s with that of the Ferroin.

Keywords: Belousov Zhabotinsky reaction, oscillatory parameters, polymer, pyrogallol

Procedia PDF Downloads 305
4055 Performance Evaluation of Polyethyleneimine/Polyethylene Glycol Functionalized Reduced Graphene Oxide Membranes for Water Desalination via Forward Osmosis

Authors: Mohamed Edokali, Robert Menzel, David Harbottle, Ali Hassanpour

Abstract:

Forward osmosis (FO) process has stood out as an energy-efficient technology for water desalination and purification, although the practical application of FO for desalination still relies on RO-based Thin Film Composite (TFC) and Cellulose Triacetate (CTA) polymeric membranes which have a low performance. Recently, graphene oxide (GO) laminated membranes have been considered an ideal selection to overcome the bottleneck of the FO-polymeric membranes owing to their simple fabrication procedures, controllable thickness and pore size and high water permeability rates. However, the low stability of GO laminates in wet and harsh environments is still problematic. The recent developments of modified GO and hydrophobic reduced graphene oxide (rGO) membranes for FO desalination have demonstrated attempts to overcome the ongoing trade-off between desalination performance and stability, which is yet to be achieved prior to the practical implementation. In this study, acid-functionalized GO nanosheets cooperatively reduced and crosslinked by the hyperbranched polyethyleneimine (PEI) and polyethylene glycol (PEG) polymers, respectively, are applied for fabrication of the FO membrane, to enhance the membrane stability and performance, and compared with other functionalized rGO-FO membranes. PEI/PEG doped rGO membrane retained two compacted d-spacings (0.7 and 0.31 nm) compared to the acid-functionalized GO membrane alone (0.82 nm). Besides increasing the hydrophilicity, the coating layer of PEG onto the PEI-doped rGO membrane surface enhanced the structural integrity of the membrane chemically and mechanically. As a result of these synergetic effects, the PEI/PEG doped rGO membrane exhibited a water permeation of 7.7 LMH, salt rejection of 97.9 %, and reverse solute flux of 0.506 gMH at low flow rates in the FO desalination process.

Keywords: desalination, forward osmosis, membrane performance, polyethyleneimine, polyethylene glycol, reduced graphene oxide, stability

Procedia PDF Downloads 92
4054 High-Value Health System for All: Technologies for Promoting Health Education and Awareness

Authors: M. P. Sebastian

Abstract:

Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.

Keywords: big data, education, healthcare, information communication technologies (ICT), patients, technologies

Procedia PDF Downloads 197
4053 Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects

Authors: Adela Penesova, Zofia Radikova, Boris Bajer, Andrea Havranova, Miroslav Vlcek

Abstract:

Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16.

Keywords: obesity, diet, exercice, insulin sensitivity

Procedia PDF Downloads 195
4052 Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection

Authors: Bienvenu Gael Fouda Mbanga

Abstract:

This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.

Keywords: Cd2+-CNPs/CeONRs nanocomposite, cadmium adsorption, isotherm, kinetics, thermodynamics, reusable for latent fingerprint detection

Procedia PDF Downloads 112
4051 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 188
4050 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping

Authors: Sharvare Palwai, Padmaja Guggilla

Abstract:

Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.

Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate

Procedia PDF Downloads 125
4049 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry

Authors: Vivek Upadhayay, Siddharth Deshmukh

Abstract:

In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.

Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization

Procedia PDF Downloads 518
4048 Military Use of Artificial Intelligence under International Humanitarian Law: Insights from Canada

Authors: Mahshid TalebianKiakalayeh

Abstract:

As AI technologies can be used by both civilians and soldiers, it is vital to consider the consequences emanating from AI military as well as civilian use. Indeed, many of the same technologies can have a dual-use. This paper will explore the military uses of AI and assess its compliance with international legal norms. AI developments not only have changed the capacity of the military to conduct complex operations but have also increased legal concerns. The existence of a potential legal vacuum in legal principles on the military use of AI indicates the necessity of more study on compliance with International Humanitarian Law (IHL), the branch of international law which governs the conduct of hostilities. While capabilities of new means of military AI continue to advance at incredible rates, this body of law is seeking to limit the methods of warfare protecting civilian persons who are not participating in an armed conflict. Implementing AI in the military realm would result in potential issues, including ethical and legal challenges. For instance, when intelligence can perform any warfare task without any human involvement, a range of humanitarian debates will be raised as to whether this technology might distinguish between military and civilian targets or not. This is mainly because AI in fully military systems would not seem to carry legal and ethical judgment, which can interfere with IHL principles. The paper will take, as a case study, Canada’s compliance with IHL in the area of AI and the related legal issues that are likely to arise as this country continues to develop military uses of AI.

Keywords: artificial intelligence, military use, international humanitarian law, the Canadian perspective

Procedia PDF Downloads 177
4047 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications

Authors: Chia-Ju Peng, Shih-Jui Chen

Abstract:

This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.

Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation

Procedia PDF Downloads 386
4046 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: identification, Hammerstein-Wiener, optimization, quantization

Procedia PDF Downloads 252
4045 Municipal Solid Waste (MSW) Composition and Generation in Nablus City, Palestine

Authors: Issam A. Al-Khatib

Abstract:

In order to achieve a significant reduction of waste amount flowing into landfills, it is important to first understand the composition of the solid municipal waste generated. Hence a detailed analysis of municipal solid waste composition has been conducted in Nablus city. The aim is to provide data on the potential recyclable fractions in the actual waste stream, with a focus on the plastic fraction. Hence, waste-sorting campaigns were conducted on mixed waste containers from five districts in Nablus city. The districts vary in terms of infrastructure and average income. The target is to obtain representative data about the potential quantity and quality of household plastic waste. The study has measured the composition of municipal solid waste collected/ transported by Nablus municipality. The analysis was done by categorizing the samples into eight primary fractions (organic and food waste, paper and cardboard, glass, metals, textiles, plastic, a fine fraction (<10 mm), and others). The study results reveal that the MSW stream in Nablus city has a significant bio- and organic waste fraction (about 68% of the total MSW). The second largest fraction is paper and cardboard (13.6%), followed by plastics (10.1%), textiles (3.2%), glass (1.9%), metals (1.8%), a fine fraction (0.5%), and other waste (0.3%). After this complete and detailed characterization of MSW collected in Nablus and taking into account the content of biodegradable organic matter, the composting could be a solution for the city of Nablus where the surrounding areas of Nablus city have agricultural activities and could be a natural outlet to the compost product. Different waste management options could be practiced in the future in addition to composting, such as energy recovery and recycling, which result in a greater possibility of reducing substantial amounts that are disposed of at landfills.

Keywords: developing countries, composition, management, recyclable, waste.

Procedia PDF Downloads 84
4044 Development of Biotechnological Emulsion Based on Bullfrog (Rana catesbeiana Shaw) Oil: A Preliminary Study

Authors: Lourena M. Veríssimo, Lucas A. Machado, Renata Rutckeviski, Francisco H. Xavier Júnior, Éverton N. Alencar, Andreza R. V. Morais, Teresa R. F. Dantas, Christian M. Oliveira, Arnóbio A. Silva Júnior, Eryvaldo S. T. Egito

Abstract:

This study aimed to obtain emulsion systems based on bullfrog oil (BO). The BO was extracted at 80ºC and analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). The critical Hydrophilic-Lipophilic Balance (HLBc) Assay of the BO was performed through BO, Tween® 20, Span® 80 and deionized water mixtures using an Ultra-Turrax® and determined using dynamic light scattering, pH, electrical conductivity and creaming rate. Then, a pseudoternary phase diagram (PPD) was constructed by water titration. The GC/MS analysis of BO suggested Methyl Oleate (9.26%) as major compound. The HLBc was 12.1, wherein the correspondent emulsion showed a pH of 4.83±1.29, electrical conductivity of 103.65 µS, creaming rate of 2.51±0.54%, droplet size of 207.07±8.31 nm and polydispersity index of 0.212±0.005. The PPD showed different formulations characterized as O/W emulsions. Thus, the PPD proved to be a useful tool to produce BO emulsions, in which their constituents may vary within the range of the desired system.

Keywords: bullfrog (Rana catesbeiana Shaw) oil, emulsion production, hydrophilic-lipophilic balance, gas chromatography/mass spectrometry analysis

Procedia PDF Downloads 502
4043 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma

Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam

Abstract:

Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.

Keywords: systems biology, ependymoma, deg, network analysis

Procedia PDF Downloads 293