Search results for: text classification
2158 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.Keywords: language skills, implementing, listening skill, attention, smart aids
Procedia PDF Downloads 452157 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily
Abstract:
Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.Keywords: biodiversity, classification, conservation, ordination, Red Sea
Procedia PDF Downloads 3432156 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island
Procedia PDF Downloads 2822155 Radiographic Predictors of Mandibular Third Molar Extraction Difficulties under General Anaesthetic
Authors: Carolyn Whyte, Tina Halai, Sonita Koshal
Abstract:
Aim: There are many methods available to assess the potential difficulty of third molar surgery. This study investigated various factors to assess whether they had a bearing on the difficulties encountered. Study design: A retrospective study was completed of 62 single mandibular third molar teeth removed under day case general anaesthesia between May 2016 and August 2016 by 3 consultant oral surgeons. Method: Data collection was by examining the OPG radiographs of each tooth and recording the necessary data. This was depth of impaction, angulation, bony impaction, point of application in relation to second molar, root morphology, Pell and Gregory classification and Winters Lines. This was completed by one assessor and verified by another. Information on medical history, anxiety, ethnicity and age were recorded. Case notes and surgical entries were examined for any difficulties encountered. Results: There were 5 cases which encountered surgical difficulties which included fracture of root apices (3) which were left in situ, prolonged bleeding (1) and post-operative numbness >6 months(1). Four of the 5 cases had Pell and Gregory classification as (B) where the occlusal plane of the impacted tooth is between the occlusal plane and the cervical line of the adjacent tooth. 80% of cases had the point of application as either coronal or apical one third (1/3) in relation to the second molar. However, there was variability in all other aspects of assessment in predicting difficulty of removal. Conclusions: Of the cases which encountered difficulties they all had at least one predictor of potential complexity but these varied case by case.Keywords: impaction, mandibular third molar, radiographic assessment, surgical removal
Procedia PDF Downloads 1812154 Using Eye-Tracking Technology to Understand Consumers’ Comprehension of Multimedia Health Information
Authors: Samiullah Paracha, Sania Jehanzeb, M. H. Gharanai, A. R. Ahmadi, H.Sokout, Toshiro Takahara
Abstract:
The purpose of this study is to examine how health consumers utilize pictures when developing an understanding of multimedia health documents, and whether attentional processes, measured by eye-tracking, relate to differences in health-related cognitive resources and passage comprehension. To investigate these issues, we will present health-related text-picture passages to elders and collect eye movement data to measure readers’ looking behaviors.Keywords: multimedia, eye-tracking, consumer health informatics, human-computer interaction
Procedia PDF Downloads 3392153 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance
Authors: Aleksandra Czubek
Abstract:
As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.Keywords: ip, technology, copyright, data, infringement, comparative analysis
Procedia PDF Downloads 192152 Demand for Care in Primary Health Care in the Governorate of Ariana: Results of a Survey in Ariana Primary Health Care and Comparison with the Last 30 Years
Authors: Chelly Souhir, Harizi Chahida, Hachaichi Aicha, Aissaoui Sihem, Chahed Mohamed Kouni
Abstract:
Introduction: In Tunisia, few studies have attempted to describe the demand for primary care in a standardized and systematic way. The purpose of this study is to describe the main reasons for demand for care in primary health care, through a survey of the Ariana Governorate PHC and to identify their evolutionary trend compared to last 30 years, reported by studies of the same type. Materials and methods: This is a cross-sectional descriptive study which concerns the study of consultants in the first line of the governorate of Ariana and their use of care recorded during 2 days in the same week during the month of May 2016, in each of these PHC. The same data collection sheet was used in all CSBs. The coding of the information was done according to the International Classification of Primary Care (ICPC). The data was entered and analyzed by the EPI Info 7 software. Results: Our study found that the most common ICPC chapters are respiratory (42%) and digestive (13.2%). In 1996 were the respiratory (43.5%) and circulatory (7.8%). In 2000, we found also the respiratory (39,6%) and circulatory (10,9%). In 2002, respiratory (43%) and digestive (10.1%) motives were the most frequent. According to the ICPC, the pathologies in our study were acute angina (19%), acute bronchitis and bronchiolitis (8%). In 1996, it was tonsillitis ( 21.6%) and acute bronchitis (7.2%). For Ben Abdelaziz in 2000, tonsillitis (14.5%) follow by acute bronchitis (8.3%). In 2002, acute angina (15.7%), acute bronchitis and bronchiolitis (11.2%) were the most common. Conclusion: Acute angina and tonsillitis are the most common in all studies conducted in Tunisia.Keywords: acute angina, classification of primary care, primary health care, tonsillitis, Tunisia
Procedia PDF Downloads 5312151 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan
Authors: Muhammad Ameer Nawaz Akram
Abstract:
The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection
Procedia PDF Downloads 1342150 Lexical Bundles in the Alexiad of Anna Comnena: Computational and Discourse Analysis Approach
Authors: Georgios Alexandropoulos
Abstract:
The purpose of this study is to examine the historical text of Alexiad by Anna Comnena using computational tools for the extraction of lexical bundles containing the name of her father, Alexius Comnenus. For this reason, in this research we apply corpus linguistics techniques for the automatic extraction of lexical bundles and through them we will draw conclusions about how these lexical bundles serve her support provided to her father.Keywords: lexical bundles, computational literature, critical discourse analysis, Alexiad
Procedia PDF Downloads 6252149 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm
Authors: R. Kiruthika, A. Kannan
Abstract:
Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm
Procedia PDF Downloads 3632148 The Crossroad of Identities in Wajdi Mouawad's 'Littoral': A Rhizomatic Approach of Identity Reconstruction through Theatre and Performance
Authors: Mai Hussein
Abstract:
'Littoral' is an original voice in Québécois theatre, spanning the cultural gaps that can exist between the playwrights’ native Lebanon, North America, Quebec, and Europe. Littoral is a 'crossroad' of cultures and themes, a 'bridge' connecting cultures and languages. It represents a new form of theatrical writing that combines the verbal, the vocal and the pantomimic, calling upon the stage to question the real, to engage characters in a quest, in a journey of mourning, of reconstructing identity and a collective memory despite ruins and wars. A theatre of witness, a theatre denouncing irrationality of racism and war, a theatre 'performing' the symptoms of the stress disorders of characters passing from resistance and anger to reconciliation and giving voice to the silenced victims, these are some of the pillars that this play has to offer. In this corrida between life and death, the identity seems like a work-in-progress that is shaped in the presence of the Self and the Other. This trajectory will lead to re-open widely the door to questions, interrogations, and reflections to show how this play is at the nexus of contemporary preoccupations of the 21st century: the importance of memory, the search for meaning, the pursuit of the infinite. It also shows how a play can create bridges between languages, cultures, societies, and movements. To what extent does it mediate between the words and the silence, and how does it burn the bridges or the gaps between the textual and the performative while investigating the power of intermediality to confront racism and segregation. It also underlines the centrality of confrontation between cultures, languages, writing and representation techniques to challenge the characters in their quest to restructure their shattered, but yet intertwined identities. The goal of this theatre would then be to invite everyone involved in the process of a journey of self-discovery away from their comfort zone. Everyone will have to explore the liminal space, to read in between the lines of the written text as well as in between the text and the performance to explore the gaps and the tensions that exist between what is said, and what is played, between the 'parole' and the performative body.Keywords: identity, memory, performance, testimony, trauma
Procedia PDF Downloads 1152147 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection
Authors: Devadrita Dey Sarkar
Abstract:
Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)
Procedia PDF Downloads 4562146 Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce.Keywords: spam keyword, e-commerce, keyword features, spam filtering
Procedia PDF Downloads 2942145 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 882144 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran
Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi
Abstract:
The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran
Procedia PDF Downloads 3662143 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 722142 Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area.Keywords: chaura thrust, out-of-sequence thrust, himachal pradesh, geological setting, tectonic framework, rock formations, structural characteristics, stress interactions, fault interactions, geological implications, seismic hazard assessment, geological hazards, future research, mitigation strategies.
Procedia PDF Downloads 802141 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review
Authors: Benedicta Asante, Catherine Trask, Brenna Bath
Abstract:
Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.Keywords: low back pain, scavenger, waste pickers, waste collection workers
Procedia PDF Downloads 2552140 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images
Procedia PDF Downloads 2182139 Consultation Liasion Psychiatry in a Tertiary Care Hospital
Authors: K. Pankaj, R. K. Chaudhary, B. P. Mishra, S. Kochar
Abstract:
Introduction: Consultation-Liaison psychiatry is a branch of psychiatry that includes clinical service, teaching and research. A consultation-liaison psychiatrist plays a role in having an expert opinion and linking the patients to other medical professionals and the patient’s bio-psycho-social aspects that may be leading to his/her symptoms. Consultation-Liaison psychiatry has been recognised as 'The guardian of the holistic approach to the patient', underlining its pre-eminent role in the management of patients who are admitted in a tertiary care hospital. Aims/ Objectives: The aim of the study was to analyse the utilization of psychiatric services and reasons for referrals in a tertiary care hospital. Materials and Methods: The study was done in a tertiary care hospital. The study included all the cases referred from different Inpatient wards to the psychiatry department for consultation. The study was conducted on 300 patients over a 3 month period. International classification of diseases 10 was used to diagnose the referred cases. Results: The majority of the referral was from the Medical Intensive care unit (22%) followed by general medical wards (18.66%). Majority of the referral was taken for altered sensorium (24.66%), followed by low mood or unexplained medical symptoms (21%). Majority of the referrals had a diagnosis of alcohol withdrawal syndrome (21%) as per International classification of diseases criteria, followed by unipolar Depression and Anxiety disorder (~ 14%), followed by Schizophrenia (5%) and Polysubstance abuse (2.6%). Conclusions: Our study concludes the importance of utilization of consultation-liaison psychiatric services. Also, the study signifies the need for sensitization of our colleagues regarding psychiatric sign and symptoms from time to time and seek psychiatric consult timely to decrease morbidity.Keywords: consultation-liaison, psychiatry, referral, tertiary care hospital
Procedia PDF Downloads 1522138 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 1322137 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1012136 The Making of a Yijing (Classic of Changes) Cultural Sphere in Asia
Authors: Ng Wai Ming
Abstract:
The Yijing (Classic of Changes) is one of the most influential Chinese classics, and its text, images and divination have been widely studied and used by different people in the world from past to present. Its impact in Asia has been particularly strong due to cultural and geographical proximity. Based on many years of textual study of the history of the Yijing in the Sinosphere, the author attempts to identify various levels of acceptance and localization of the Yijing in different Asian regions, including Japan, Korea, the Ryukyu Kingdom, Vietnam, Mongolia and Tibet. It will create a new concept of “Yijing cultural sphere” to explain the popularization and indigenization of the Yijing in Asia.Keywords: classic of changes, asia, sinosphere, localization
Procedia PDF Downloads 622135 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 2482134 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 652133 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1212132 Optimizing the Use of Google Translate in Translation Teaching: A Case Study at Prince Sultan University
Authors: Saadia Elamin
Abstract:
The quasi-universal use of smart phones with internet connection available all the time makes it a reflex action for translation undergraduates, once they encounter the least translation problem, to turn to the freely available web resource: Google Translate. Like for other translator resources and aids, the use of Google Translate needs to be moderated in such a way that it contributes to developing translation competence. Here, instead of interfering with students’ learning by providing ready-made solutions which might not always fit into the contexts of use, it can help to consolidate the skills of analysis and transfer which students have already acquired. One way to do so is by training students to adhere to the basic principles of translation work. The most important of these is that analyzing the source text for comprehension comes first and foremost before jumping into the search for target language equivalents. Another basic principle is that certain translator aids and tools can be used for comprehension, while others are to be confined to the phase of re-expressing the meaning into the target language. The present paper reports on the experience of making a measured and reasonable use of Google Translate in translation teaching at Prince Sultan University (PSU), Riyadh. First, it traces the development that has taken place in the field of translation in this age of information technology, be it in translation teaching and translator training, or in the real-world practice of the profession. Second, it describes how, with the aim of reflecting this development onto the way translation is taught, senior students, after being trained on post-editing machine translation output, are authorized to use Google Translate in classwork and assignments. Third, the paper elaborates on the findings of this case study which has demonstrated that Google Translate, if used at the appropriate levels of training, can help to enhance students’ ability to perform different translation tasks. This help extends from the search for terms and expressions, to the tasks of drafting the target text, revising its content and finally editing it. In addition, using Google Translate in this way fosters a reflexive and critical attitude towards web resources in general, maximizing thus the benefit gained from them in preparing students to meet the requirements of the modern translation job market.Keywords: Google Translate, post-editing machine translation output, principles of translation work, translation competence, translation teaching, translator aids and tools
Procedia PDF Downloads 4732131 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 1232130 Facilitating Waste Management to Achieve Sustainable Residential Built Environments
Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy
Abstract:
The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.Keywords: recycling, residential buildings, sustainability, waste
Procedia PDF Downloads 3272129 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić
Abstract:
Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.Keywords: cerebral palsy, Czech republic, social participation, the school function assessment
Procedia PDF Downloads 361