Search results for: simulated concrete pore solution (SPS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9082

Search results for: simulated concrete pore solution (SPS)

7882 Shade Effect on Photovoltaic Systems: A Comparison between String and Module-Based Solution

Authors: Iyad M. Muslih, Yehya Abdellatif

Abstract:

In general, shading will reduce the electrical power produced from PV modules and arrays in locations where shading is unavoidable or caused by dynamic moving parts. This reduction is based on the shade effect on the I-V curve of the PV module or array and how the DC/AC inverter can search and control the optimum value of power from this module or array configuration. This is a very complicated task due to different patterns of shaded PV modules and arrays. One solution presented by the inverter industry is to perform the maximum power point tracking (MPPT) at the module level rather than the series string level. This solution is supposed to reduce the shade effect on the total harvested energy. However, this isn’t necessarily the best solution to reduce the shade effect as will be shown in this study.

Keywords: photovoltaic, shade effect, I-V curve, MPPT

Procedia PDF Downloads 384
7881 Evaluation of Limestone as Self-Curing Aggregate for Concretes in the Southeast of Yucatan Peninsula

Authors: D. G. Rejon-Parra, B. Escobar-Morales, Romeli Barbosa, J. C. Cruz

Abstract:

In the southeast of Yucatan Peninsula, sedimentary limestone has different degrees of compaction. Due to its recent geological formation (Quaternary) and weathering effects causing an affordable aggregate for local manufacturers of concrete. It is characterized as lightweight aggregates (average density of 2,50), susceptible to abrasion and varying porosities (water content exceeding 7,50 % of its mass, in saturated condition). In this study, local aggregates with two moisture conditions (saturated and dry), have been examined in order to compare them for optimizing the performance of concrete. It is possible that these aggregates favour a phenomenon of mass transport (self-curing by porous aggregate); influencing the water reactions to form crystalline and gel hydration products. Based on the ACI methodology, a concrete mixture of 250 kg/cm2 was designed, with portland blended cement 30R. The bond between the mortar and the coarse aggregate was characterized as physicochemical based on trials which were carefully observed during time span of 28 days. The BET technique was used to analyse the micro porosity and surface areas of contact of the different crystalline phases of the limestone. Its chemical composition and crystal structures were verified with scanning electron microscopy SEM-EDS. On the third day, the samples with saturated aggregate reached 237 kg/cm2 of resistence, nearly the design strength; while samples with dry aggregate, exceeded the design strength, with a capacity of 308 kg/cm2. Aggregates in dry conditions demand a high quantity of water in the initial mixture, causing high resistance at the early stages. In saturated conditions, the development of resistance is progressive but constant.

Keywords: concrete, internal curing, limestone aggregate, porosity

Procedia PDF Downloads 376
7880 A Superposition Method in Analyses of Clamped Thick Plates

Authors: Alexander Matrosov, Guriy Shirunov

Abstract:

A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.

Keywords: general solution, method of initial functions, superposition method, thick isotropic plates

Procedia PDF Downloads 579
7879 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia

Authors: Edward P. Guillen, A. Karina Martinez Barliza

Abstract:

Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.

Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution

Procedia PDF Downloads 254
7878 Experimental Research on the Properties Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen, M. A. Yazdi, J. Yang

Abstract:

This study investigates the influence of water-binder ratio, mineral admixtures (silica fume and ground granulated blast furnace slag), and copper coated steel fiber on fluidity diameter, compressive and flexural strengths of reactive powder concrete (RPC). The test results show that the binary combination of silica fume and blast-furnace slag provided a positive influence on the mechanical properties of RPC. Although the addition of fibers reduced the workability, results indicated a higher mechanical strength in the inclusion of fibers.

Keywords: RPC, steel fiber, fluidity, mechanical properties

Procedia PDF Downloads 286
7877 Increased Reaction and Movement Times When Text Messaging during Simulated Driving

Authors: Adriana M. Duquette, Derek P. Bornath

Abstract:

Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.

Keywords: simulated driving, text messaging, reaction time, movement time

Procedia PDF Downloads 511
7876 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 174
7875 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 182
7874 Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique

Authors: S. Lekhavat, U. Srimongkoluk, P. Ratanachamnong, G. Laungsopapun

Abstract:

Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C.

Keywords: drying temperature, particle morphology, spray drying, quercetin

Procedia PDF Downloads 246
7873 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 284
7872 Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution

Authors: Sperisa Distantina, Fadilah Fadilah, Mujtahid Kaavessina

Abstract:

Hydrogel films were prepared from kappa carrageenan by crosslinking with glutaraldehyde. Carrageenan films extracted from Kappaphycus alvarezii seaweed were immersed in glutaraldehyde solution for 2 min and then cured at 110 °C for 25 min. The obtained crosslinked films were washed with ethanol to remove the unreacted glutaraldehyde and then air dried to constant weights. The aim of this research was to study the swelling degree behaviour of the hydrogel film to neutral salts solution, namely NaCl, KCl, and CaCl2. The results showed that swelling degree of crosslinked films varied non-monotonically with salinity of NaCl. Swelling degree decreased with the increasing of KCl concentration. Swelling degree of crosslinked film in CaCl2 solution was lower than that in NaCl and in KCl solutions.

Keywords: carrageenan, hydrogel, glutaraldehyde, salt, swelling

Procedia PDF Downloads 227
7871 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation

Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir

Abstract:

It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.

Keywords: concrete formulation, fractal character, granular packing, method of formulation

Procedia PDF Downloads 238
7870 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 116
7869 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša

Abstract:

Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 221
7868 Emissivity Analysis of Hot-Dip Galvanized Steel in Fire

Authors: Christian Gaigl, Martin Mensinger

Abstract:

Once a fire resistance rating is necessary, it has to be proofed that the load bearing behavior of a steel construction under the exposure of fire still fits the static demands. High costs of passive fire protection, which satisfies the requirements, frequently result in a concrete solution. To optimize these expenses, one method is to determine the critical temperature according to the Eurocode DIN EN 1993-1-2. For this purpose, positive effects of hot-dip galvanized surface layers on the temperature development of steel members in the accidental situation of fire exposure has been investigated. The test results show a significant better heating behavior of hot-dip galvanized steel components compared to normal steel specimen. This leads in many cases to a R30 (30 minutes of ISO-fire) fire protection requirement of unprotected steel members and therefore to an economic added value.

Keywords: fire resistance, hot-dip galvanizing, steel constructions, R30 requirement, emissivity

Procedia PDF Downloads 240
7867 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution

Authors: Jie Ren, Siyao Guo

Abstract:

Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.

Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid

Procedia PDF Downloads 105
7866 A Review on the Usage of Ceramic Wastes in Concrete Production

Authors: O. Zimbili, W. Salim, M. Ndambuki

Abstract:

Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.

Keywords: blended, morphological, pozzolanic, waste

Procedia PDF Downloads 349
7865 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light

Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik

Abstract:

In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.

Keywords: phenol, photocatalytic, solar, titanium dioxide

Procedia PDF Downloads 385
7864 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China

Authors: Y. Sakai, C. Wang

Abstract:

The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.

Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete

Procedia PDF Downloads 173
7863 Individual Actuators of a Car-Like Robot with Back Trailer

Authors: Tarek El-Derini, Ahmed El-Shenawy

Abstract:

This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T). The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup.

Keywords: kinematics, modeling, robot, MATLAB

Procedia PDF Downloads 425
7862 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity

Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek

Abstract:

In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.

Keywords: zeta potential, adsorption, Orange 16, isotherms

Procedia PDF Downloads 184
7861 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 108
7860 Modelling the Growth of σ-Phase in AISI 347H FG Steel

Authors: Yohanes Chekol Malede

Abstract:

σ-phase has negative effects on the corrosion responses and the mechanical properties of steels. The growth of σ-phase in the austenite matrix of AISI 347H FG steel was simulated using DICTRA software using CALPHAD method. The simulation work included the influence of both volume diffusion and grain boundary diffusion. The simulation results showed a good agreement with the experimental findings. The simulation results revealed a Cr-depleted and a Ni-enriched σ-phase/austenite interface. Effects of temperature, grain size, and composition of alloying elements on the growth kinetics of σ-phase were assessed. The simulated results were fitted to the JMAK equation and a good correlation was obtained.

Keywords: AISI 347H FG austenitic steel, CALPHAD, sigma phase, microstructure evolution

Procedia PDF Downloads 135
7859 Molecular Dynamics Studies of Homogeneous Condensation and Thermophysical Properties of HFC-1336mzz(Z)

Authors: Misbah Khan, Jian Wen, Muhammad Asif Shakoori

Abstract:

The Organic Rankine Cycle (ORC) plays an important role in converting low-temperature heat sources into electrical power by using refrigerants as working fluids. The thermophysical properties of working fluids are essential for designing ORC. HFO-1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) considered as working fluid and have almost 99% low GWP and relatively same thermophysical properties used as a replacement of HFC-245fa (1,1,1,3,3-pentafluoro-propane). The environmental, safety, healthy and thermophysical properties of HFO-1336mzz(Z) are needed to use it in a practical system. In this paper, Molecular dynamics simulations were used to investigate the Homogeneous condensation, thermophysical and structural properties of HFO-1336mzz(Z) and HFC-245fa. The effect of various temperatures and pressures on thermophysical properties and condensation was extensively investigated. The liquid densities and isobaric heat capacities of this refrigerant was simulated at 273.15K to 353.15K temperatures and pressure0.5-4.0MPa. The simulation outcomes were compared with experimental data to validate our simulation method. The mean square displacement for different temperatures was investigated for dynamical analysis. The variations in potential energies and condensation rate were simulated to get insight into the condensation process. The radial distribution function was simulated at the micro level for structural analysis and revealed that the phase transition of HFO-1336mzz(Z) did not affect the intramolecular structure.

Keywords: homogenous condensation, refrigerants, molecular dynamics simulations, organic rankine cycle

Procedia PDF Downloads 140
7858 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation

Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan

Abstract:

A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.

Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches

Procedia PDF Downloads 373
7857 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material

Procedia PDF Downloads 293
7856 Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials

Authors: Muhammad Rizwan Akram, Saim Raza, Hamza Hanif Chauhan

Abstract:

This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests.

Keywords: silica fume, GGBS, compressive strength, permeability

Procedia PDF Downloads 362
7855 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code

Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam

Abstract:

Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.

Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland

Procedia PDF Downloads 411
7854 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 298
7853 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes

Authors: P. Parthiban, J. Karthikeyan

Abstract:

This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.

Keywords: Alccofine, compressive strength, RCPT, wood ash pellets

Procedia PDF Downloads 172