Search results for: shared frailty survival models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8677

Search results for: shared frailty survival models

7477 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 143
7476 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera

Abstract:

In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.

Keywords: SERS, Raman, PLS-DA, diseases

Procedia PDF Downloads 141
7475 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration

Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang

Abstract:

To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.

Keywords: medical decision, medical ontologies, ontologies integration, linked data, knowledge engineering, e-health system

Procedia PDF Downloads 198
7474 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 320
7473 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 77
7472 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 226
7471 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia

Authors: Giuliana Murfet, Heidi Behrens

Abstract:

Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.

Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional

Procedia PDF Downloads 228
7470 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 336
7469 Anticoccidial Effects of the Herbal Mixture in Boilers after Eimeria spp. Infection

Authors: Yang-Ho Jang, Soon-Ok Jee, Hae-Chul Park, Jeong-Woo Kang, Byung-Jae So, Sung-Shik Shin, Kyu-Sung Ahn, Kwang-Jick Lee

Abstract:

Introduction: Antibiotics have been used as feed additives for the growth promotion and performance in food-producing animals. However, the possibility of selection of antimicrobial resistance and the concerns of residue in animal products led to ban the use of antibiotics in farm animals at 2011 in Korea. This strategy is also adjusted to anticoccidial drugs soon but these are still allowed for the time being to use in a diet for the treatment and control for the enteric necrosis in poultry. Therefore substantial focus has been given to find alternatives to antimicrobial agents. Several phytogenic materials have been reported to have positive effects on coccidiosis. This study was to evaluate the effects on anti-coccidial effect of oregano oil based herb mixture on Eimeria spp. in poultry. Materials and Methods: A total of one day-old boiler chickens divided into six groups (each group=30 chkckens) were used in this study. The herbal mixture was fed with water freely as follows: two groups, one infected with Eimeria spp. and the other group served as controls without herbal mixture respectively; 0.2ml/L of oregano oil; 0.2ml/L of oregano oil and Sanguisorbae radix; 0.2ml/L of Sanguisorbae radix; last group was fed with dichlazuril diet as positive control. Sporulated Eimeria spp. was infected at 14 day-old. Following infection, survival rate, bloody diarrhea, OPG (oocyst per gram) and feed conversion ratios were determined. The experimental period was lasted for 4 weeks. Results: Herbal mixture feeding groups (Group 3,4,5) showed low feed conversion ratio comparing with negative control. Oregano oil group and positive control group recorded the highest survival rate. The grade of bloody diarrhea was scored 0 to 5. Herbal mixture feeding groups showed 2, 3 and 1 score respectively however, group 2 (infection and no-treatment) showed 4. OPG results in herbal mixture feeding group were 3 to 4 times higher than diclazuril diet feeding group. Conclusions: These results showed that oregano oil and Sanguisorbae radix mixture may have an anti-coccidial effect and also affect chick performance.

Keywords: anticoccidial effects, oregano oil based herb mixture, herbal mixture, antibiotics

Procedia PDF Downloads 554
7468 Long- and Short-Term Impacts of COVID-19 and Gold Price on Price Volatility: A Comparative Study of MIDAS and GARCH-MIDAS Models for USA Crude Oil

Authors: Samir K. Safi

Abstract:

The purpose of this study was to compare the performance of two types of models, namely MIDAS and MIDAS-GARCH, in predicting the volatility of crude oil returns based on gold price returns and the COVID-19 pandemic. The study aimed to identify which model would provide more accurate short-term and long-term predictions and which model would perform better in handling the increased volatility caused by the pandemic. The findings of the study revealed that the MIDAS model performed better in predicting short-term and long-term volatility before the pandemic, while the MIDAS-GARCH model performed significantly better in handling the increased volatility caused by the pandemic. The study highlights the importance of selecting appropriate models to handle the complexities of real-world data and shows that the choice of model can significantly impact the accuracy of predictions. The practical implications of model selection and exploring potential methodological adjustments for future research will be highlighted and discussed.

Keywords: GARCH-MIDAS, MIDAS, crude oil, gold, COVID-19, volatility

Procedia PDF Downloads 65
7467 Influence of Behavior Models on the Response of a Reinforced Concrete Frame: Multi-Fiber Approach

Authors: A. Kahil, A. Nekmouche, N. Khelil, I. Hamadou, M. Hamizi, Ne. Hannachi

Abstract:

The objective of this work is to study the influence of the nonlinear behavior models of the concrete (concrete_BAEL and concrete_UNI) as well as the confinement brought by the transverse reinforcement on the seismic response of reinforced concrete frame (RC/frame). These models as well as the confinement are integrated in the Cast3m finite element calculation code. The consideration of confinement (TAC, taking into account the confinement) provided by the transverse reinforcement and the non-consideration of confinement (without consideration of containment, WCC) in the presence and absence of a vertical load is studied. The application was made on a reinforced concrete frame (RC/frame) with 3 levels and 2 spans. The results show that on the one hand, the concrete_BAEL model slightly underestimates the resistance of the RC/frame in the plastic field, whereas the concrete_uni model presents the best results compared to the simplified model "concrete_BAEL", on the other hand, for the concrete-uni model, taking into account the confinement has no influence on the behavior of the RC/frame under imposed displacement up to a vertical load of 500 KN.

Keywords: reinforced concrete, nonlinear calculation, behavior laws, fiber model confinement, numerical simulation

Procedia PDF Downloads 163
7466 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi

Abstract:

The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling

Procedia PDF Downloads 368
7465 Offloading Knowledge-Keeping to Digital Technology and the Attrition of Socio-Cultural Life

Authors: Sophia Melanson Ricciardone

Abstract:

Common vexations concerning the impact of contemporary media technology on our daily lives tend to conjure mental representations of digital specters that surreptitiously invade the privacy of our most intimate spaces. While legitimacy assuredly sustains these concerns, examining them in isolation from other attributable phenomena to the problems created by our hyper-mediated conditions does not supply a complete account of the deleterious cost of integrating digital affordances into the banal cadence of our shared socio-cultural realities. As we continue to subconsciously delegate facets of our social and cognitive lives to digital technology, the very faculties that have enabled our species to thrive and invent technology in the first place are at risk of attrition – namely our capacity to sustain attention while synthesizing information in working memory to produce creative and inventive constructions for our shared social existence. Though the offloading of knowledge-keeping to fellow social agents belonging to our family and community circles is an enduring intuitive phenomenon across human societies – what social psychologists refer to as transactive memory – in offloading our various socio-cognitive faculties to digital technology, we may plausibly be supplanting the visceral social connections forged by transactive memory. This paper will present related research and literature produced across the disciplines of sociobiology, socio-cultural anthropology, social psychology, cognitive semiotics and communication and media studies that directly and indirectly address the social precarity cultivated by digital technologies. This body of scholarly work will then be situated within common areas of interest belonging to digital anthropology, including the groundbreaking work of Pavel Curtis, Christopher Kelty, Lynn Cherny, Vincent Duclos, Nick Seaver, and Sherry Turkle. It is anticipated that in harmonizing these overlapping areas of intradisciplinary interest, this paper can weave together the disparate connections across spheres of knowledge that help delineate the conditions of our contemporary digital existence.

Keywords: cognition, digital media, knowledge keeping, transactive memory

Procedia PDF Downloads 139
7464 Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) Architecture and Design

Authors: Ahmed Alqaoud

Abstract:

This paper describes Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) architecture and its components that collectively provide interoperability between heterogeneous scientific workflow systems. Requirements to achieve interoperability are identified. This paper also provides a detailed investigation and design of models and solutions for system requirements, and considers how workflow interoperability models provided by Workflow Management Coalition (WfMC) can be achieved using the PS-SWIF system.

Keywords: publish/subscribe, scientific workflow, web services, workflow interoperability

Procedia PDF Downloads 307
7463 A Block World Problem Based Sudoku Solver

Authors: Luciana Abednego, Cecilia Nugraheni

Abstract:

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems

Procedia PDF Downloads 341
7462 A Comparative Study of the Proposed Models for the Components of the National Health Information System

Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi

Abstract:

National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.

Keywords: National Health Information System, components of the NHIS, Lippeveld Model

Procedia PDF Downloads 421
7461 Towards Security in Virtualization of SDN

Authors: Wanqing You, Kai Qian, Xi He, Ying Qian

Abstract:

In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.

Keywords: SDN, network, virtualization, security

Procedia PDF Downloads 428
7460 Models to Estimate Monthly Mean Daily Global Solar Radiation on a Horizontal Surface in Alexandria

Authors: Ahmed R. Abdelaziz, Zaki M. I. Osha

Abstract:

Solar radiation data are of great significance for solar energy system design. This study aims at developing and calibrating new empirical models for estimating monthly mean daily global solar radiation on a horizontal surface in Alexandria, Egypt. Day length hours, sun height, day number, and declination angle calculated data are used for this purpose. A comparison between measured and calculated values of solar radiation is carried out. It is shown that all the proposed correlations are able to predict the global solar radiation with excellent accuracy in Alexandria.

Keywords: solar energy, global solar radiation, model, regression coefficient

Procedia PDF Downloads 405
7459 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 138
7458 Heteroscedastic Parametric and Semiparametric Smooth Coefficient Stochastic Frontier Application to Technical Efficiency Measurement

Authors: Rebecca Owusu Coffie, Atakelty Hailu

Abstract:

Variants of production frontier models have emerged, however, only a limited number of them are applied in empirical research. Hence the effects of these alternative frontier models are not well understood, particularly within sub-Saharan Africa. In this paper, we apply recent advances in the production frontier to examine levels of technical efficiency and efficiency drivers. Specifically, we compare the heteroscedastic parametric and the semiparametric stochastic smooth coefficient (SPSC) models. Using rice production data from Ghana, our empirical estimates reveal that alternative specification of efficiency estimators results in either downward or upward bias in the technical efficiency estimates. Methodologically, we find that the SPSC model is more suitable and generates high-efficiency estimates. Within the parametric framework, we find that parameterization of both the mean and variance of the pre-truncated function is the best model. For the drivers of technical efficiency, we observed that longer farm distances increase inefficiency through a reduction in labor productivity. High soil quality, however, increases productivity through increased land productivity.

Keywords: pre-truncated, rice production, smooth coefficient, technical efficiency

Procedia PDF Downloads 446
7457 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 70
7456 Recurrence of Papillary Thyroid Cancer with an Interval of 40 Years. Report of an Autopsy Case

Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi

Abstract:

A 75-year-old woman took thyroidectomy forty years previously. Enlarged masses were seen at autopsy just above and below the left clavicle. We proved the diagnosis of papillary thyroid cancer (PTC) and lung metastasis by histological examinations. The prognosis of PTC is excellent; the 10-year survival rate ranges between 85 and 99%. Lung metastases may be found in 10% of the patients with PTC. We report an unusual case of recurrence of PTC with metastasis to the lung.

Keywords: papillary thyroid cancer, lung metastasis, autopsy, histopathological findings

Procedia PDF Downloads 340
7455 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
7454 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, A. Elazim Negm

Abstract:

Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models

Procedia PDF Downloads 475
7453 Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study

Authors: Vijaya Madhuri Devraj, Swarnalatha Guditi, Kiran Kumar Bokara, Gangadhar Taduri

Abstract:

Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection.

Keywords: graft rejection, graft tolerance, macrophage polarization, mesenchymal stem cells, regulatory T cells, transplant immunology

Procedia PDF Downloads 118
7452 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 67
7451 Effects of Level Densities and Those of a-Parameter in the Framework of Preequilibrium Model for 63,65Cu(n,xp) Reactions in Neutrons at 9 to 15 MeV

Authors: L. Yettou

Abstract:

In this study, the calculations of proton emission spectra produced by 63Cu(n,xp) and 65Cu(n,xp) reactions are used in the framework of preequilibrium models using the EMPIRE code and TALYS code. Exciton Model predidtions combined with the Kalbach angular distribution systematics and the Hybrid Monte Carlo Simulation (HMS) were used. The effects of levels densities and those of a-parameter have been investigated for our calculations. The comparison with experimental data shows clear improvement over the Exciton Model and HMS calculations.

Keywords: Preequilibrium models , level density, level density a-parameter., Empire code, Talys code.

Procedia PDF Downloads 134
7450 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 487
7449 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 13
7448 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 68