Search results for: real-time monitoring
1956 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4361955 Experimental Support for the District Metered Areas/Pressure Management Areas Application
Authors: K. Ilicic, D. Smoljan
Abstract:
The purpose of the paper is to present and verify a methodology of decreasing water losses by introducing and managing District Metered Areas (DMA) and Pressure Management Areas (PMA) by analyzing the results of the application of the methodology to the water supply system of the city of Zagreb. Since it is a relatively large system that has been expanding rapidly, approach to addressing water losses was possible only by splitting the system to smaller flow and pressure zones. Besides, the geographical and technical limitations had imposed the necessity of high pressure in the system that needed to be reduced to the technically optimal level. Results of activities were monitored on a general and local level by establishing, monitoring, and controlling indicators that had been established by the International Water Association (IWA), among which the most recognizable were non-revenue water, water losses and real losses as presented in the paper.Keywords: district metered area, pressure metered area, active leakage control, water losses
Procedia PDF Downloads 1841954 An Intelligent WSN-Based Parking Guidance System
Authors: Sheng-Shih Wang, Wei-Ting Wang
Abstract:
This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.Keywords: Arduino, parking guidance, wireless sensor network, ZigBee
Procedia PDF Downloads 5781953 Underwater Remotely Operated Vehicle (ROV) Exploration
Authors: M. S. Sukumar
Abstract:
Our objective is to develop a full-fledged system for exploring and studying nature of fossils and to extend this to underwater archaeology and mineral mapping. This includes aerial surveying, imaging techniques, artefact extraction and spectrum analysing techniques. These techniques help in regular monitoring of fossils and also the sensing system. The ROV was designed to complete several tasks which simulate collecting data and samples. Given the time constraints, the ROV was engineered for efficiency and speed in performing tasks. Its other major design consideration was modularity, allowing the team to distribute the building process, to easily test systems as they were completed and troubleshoot and replace systems as necessary. Our design itself had several challenges of on-board waterproofed sensor mounting, waterproofing of motors, ROV stability criteria, camera mounting and hydrophone sound acquisition.Keywords: remotely operated vehicle (ROV) dragonair, underwater archaeology, full-fledged system, aerial imaging and detection
Procedia PDF Downloads 2391952 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1241951 Elevating Environmental Impact Assessment through Remote Sensing in Engineering
Authors: Spoorthi Srupad
Abstract:
Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors.Keywords: environmental impact assessment, engineering applications, sustainability, environmental monitoring, remote sensing, geographic information systems, environmental management
Procedia PDF Downloads 921950 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2901949 Assessment of Occupational Health and Safety Conditions of Health Care Workers in Barangay Health Centers in a Selected City in Metro Manila
Authors: Deinzel R. Uezono, Vivien Fe F. Fadrilan-Camacho, Bianca Margarita L. Medina, Antonio Domingo R. Reario, Trisha M. Salcedo, Luke Wesley P. Borromeo
Abstract:
The environment of health care workers is considered one of the most hazardous settings due to the nature of their work. In developing countries especially, the Philippines, this continues to be overlooked in terms of programs and services on occupational health and safety (OHS). One possible reason for this is the existing information gap on OHS which limits data comparability and impairs effective monitoring and assessment of interventions. To address this gap, there is a need to determine the current conditions of Filipino health care workers in their workplace. This descriptive cross-sectional study assessed the occupational health and safety conditions of health care workers in barangay health centers in a selected city in Metro Manila, Philippines by: (1) determining the hazards present in the workplace; (2) determining the most common self-reported medical problems; and (3) describing the elements of an OHS system based on the six building blocks of health system. Assessment was done through walkthrough survey, self-administered questionnaire, and key informant interview. Data analysis was done using Epi Info 7 and NVivo 11. Results revealed different health hazards present in the workplace particularly biological hazards (exposure to sick patients and infectious specimens), physical hazards (inadequate space and/or lighting), chemical hazards (toxic reagents and flammable chemicals), and ergonomic hazards (activities requiring repetitive motion and awkward posture). Additionally, safety hazards (improper capping of syringe and lack of fire safety provisions) were also observed. Meanwhile, the most commonly self-reported chronic diseases among health care workers (N=336) were hypertension (20.24%, n=68) and diabetes (12.50%, n=42). Top commonly self-reported symptoms were colds (66.07%, n=222), coughs (63.10%, n=212), headache (55.65%, n=187), and muscle pain (50.60%, n=170) while other diseases were influenza (16.96%, n=57) and UTI (15.48%, n=52). In terms of the elements of the OHS system, a general policy on occupational health and safety was found to be lacking and in effect, an absence of health and safety committee overseeing the implementing and monitoring of the policy. No separate budget specific for OHS programs and services was also found to be a limitation. As a result, no OHS personnel and trainings/seminar were identified. No established information system for OHS was in place. In conclusion, health and safety hazards were observed to be present across the barangay health centers visited in a selected city in Metro Manila. Medical conditions identified as most commonly self-reported were hypertension and diabetes for chronic diseases; colds, coughs, headache, and muscle pain for medical symptoms; and influenza and UTI for other diseases. As for the elements of the occupational health and safety system, there was a lack in the general components of the six building blocks of the health system.Keywords: health hazards, occupational health and safety, occupational health and safety system, safety hazards
Procedia PDF Downloads 1871948 Omani PE Candidate Self-Reports of Learning Strategies Used to Learn Sport Skills
Authors: Nasser Al-Rawahi
Abstract:
The study aims at determining self-regulated learning strategies used by Omani physical education candidates to learn sport skills. The data were collected by a self-regulated learning theory questionnaire. The sample of the study comprised of 145 undergraduate physical education students enrolled in the department of physical education at the College of Education, Sultan Qaboos University. The findings of the study revealed that the most commonly used strategies for learning sport skills by Omani physical education candidate are ‘the effort learning strategies, planning learning strategies and evaluation learning strategies’. However, the reflection learning strategies, self-monitoring and self-efficacy learning strategies were revealed as the least used strategies by the PE candidates in learning and acquiring sport skills. Based on these findings, suggestions and recommendations for future research were provided.Keywords: learning strategies, physical education candidates, self-regulated learning theory, Oman
Procedia PDF Downloads 6171947 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images
Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget
Abstract:
In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).Keywords: agricultural practices, remote sensing, rice, yield
Procedia PDF Downloads 2751946 Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions
Authors: A. Kudrev
Abstract:
The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule.Keywords: melting, Poly(A)-Poly(U), TMPyP4, Zn(X)TMPyP4
Procedia PDF Downloads 1511945 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5301944 Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent
Authors: Shashikant R. Kuchekar, Somnath D. Bhumkar, Haribhau R. Aher, Bhaskar H. Zaware, Ponnadurai Ramasami
Abstract:
A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.Keywords: solvent extraction, PMPT, Palladium (II), spectrophotometry
Procedia PDF Downloads 4621943 Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum
Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne, Amtul Qayoom
Abstract:
Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components.Keywords: alprazolam, ACE inhibitors, RP HPLC, serum
Procedia PDF Downloads 5151942 Degradation of Rose Bengal by UV in the Presence of NiFe2O4 Nanoparticles
Authors: H. Boucheloukh, N. Aoun, S. Rouissa, T. Sehili, F. Parrino, V. Loddo
Abstract:
Photocatalysis has made a revolution in wastewater treatment and the elimination of persistent organic pollutants. This process is based on the use of semiconductors as photocatalysts. In this study, nickel ferrite spinel (NiFe2O4) nanoparticles were successfully synthesized by the sol-gel route. The structural, morphological, elemental composition, chemical state, particle size, optical and electrochemical characterizations using powder X-ray diffraction (P-XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy (EDAX ). We tested the prepared NiFe2O4(NPS)by monitoring the degradation of Rose Bengal (RB) dye in an aqueous solution under direct sunlight irradiation. The effects of catalyst dosage and dye concentration were also considered for the effective degradation of RB dye. The optimum catalyst dosage and concentration of dye were found to be 1 g/L and 10 μM, respectively. A maximum of 80% photocatalytic degradation efficiency (DE%) was achieved at 120 min of direct sunlight irradiation.Keywords: Rose Bengal, Nickelate, photocatalysis, irradiation
Procedia PDF Downloads 2141941 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network
Authors: Purva Joshi, Rohit Thanki, Omar Hanif
Abstract:
Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem
Procedia PDF Downloads 2061940 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review
Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari
Abstract:
Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.Keywords: environmental phenomena, change detection, monitor, techniques
Procedia PDF Downloads 2751939 A Mother’s Silent Adversary: A Case of Pregnant Woman with Cervical Cancer
Authors: Paola Millare, Nelinda Catherine Pangilinan
Abstract:
Background and Aim: Cervical cancer is the most commonly diagnosed gynecological malignancy during pregnancy. Owing to the rarity of the disease, and the complexity of all factors that have to be taken into consideration, standardization of treatment is very difficult. Cervical cancer is the second most common malignancy among women. The treatment of cancer during pregnancy is most challenging in the case of cervical cancer, since the pregnant uterus itself is affected. This report aims to present a case of cervical cancer in a pregnant woman and how to manage this case and several issues accompanied with it. Methods: This is a case of a 28 year-old, Gravida 4 Para 2 (1111), who presented with watery to mucoid, whitish, non-foul smelling and increasing in amount. Internal examination revealed normal external genitalia, parous outlet, cervix was transformed into a fungating mass measuring 5x4 cm, with left parametrial involvement, body of uterus was enlarged to 24 weeks size, no adnexal mass or tenderness. She had cervical punch biopsy, which revealed, adenocarcinoma, well-differentiated cervical tissue. Standard management for cases with stage 2B cervical carcinoma was to start radiation or radical hysterectomy. In the case of patients diagnosed with cervical cancer and currently pregnant, these kind of management will result to fetal loss. The patient still declined the said management and opted to delay the treatment and wait for her baby to reach at least term and proceed to cesarean section as route of delivery. Results: The patient underwent an elective cesarean section at 37th weeks age of gestation, with an outcome of a term, live baby boy APGAR score 7,9 birthweight 2600 grams. One month postpartum, the patient followed up and completed radiotherapy, chemotherapy and brachytherapy. She was advised to go back after 6 months for monitoring. On her last check up, an internal examination was done which revealed normal external genitalia, vagina admits 2 fingers with ease, there is a palpable fungating mass at the cervix measuring 2x2 cm. A repeat gynecologic oncologic ultrasound was done revealing cervical mass, endophytic, grade 1 color score with stromal invasion 35% post radiation reactive lymph nodes with intact paracolpium, pericervical, and parametrial involvement. The patient was then advised to undergo pelvic boost and for close monitoring of the cervical mass. Conclusion: Cervical cancer in pregnancy is rare but is a dilemma for women and their physicians. Treatment should be multidisciplinary and individualized following careful counseling. In this case, the treatment was clearly on the side of preventing the progression of cervical cancer while she is pregnant, however due to ethical reasons, the management deviates on the right of the patient to decide for her own health and her unborn child. The collaborative collection of data relating to treatment and outcome is strongly encouraged.Keywords: cancer, cervical, ethical, pregnancy
Procedia PDF Downloads 2451938 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6281937 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy
Authors: Anisa Suraya Ab Razak, Izza Hayat
Abstract:
Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia
Procedia PDF Downloads 1241936 Analysis of Changes in Land Uses Planning for Bangalore City as per Master Plans
Authors: Minakshi Goswami, M. V. Khire
Abstract:
The urban land use is an outcome of geographical and socio economic factors over the decades. Hence, spatial information on land use and possibilities of alternate use is essential for the selection, planning and implementation to meet the increasing demands of human needs and welfare of the urban area. This information assists in monitoring the land use resulting out of charging demands of increasing urban population over the decades. So in this paper, a detailed work on urban land use pattern, with a special reference to build up land in Bangalore city is analyzed in view of the various master plans from 1975to 2011. An attempt has been made to study the status of urban land use of Bangalore city during this period to detect the changes on land utilization rate that has taken place in each master plan period, particularly in the built-up land. The set of measures taken by the city corporation to contain the problems regarding the extremely bothering existing land use in Bangalore city is analyzed.Keywords: built up land, land use changes, master plan, population
Procedia PDF Downloads 4641935 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 3831934 The Increasing Importance of the Role of AI in Higher Education
Authors: Joshefina Bengoechea Fernandez, Alex Bell
Abstract:
In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics
Procedia PDF Downloads 1081933 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 611932 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 3801931 Monitoring Air Pollution Effects on Children for Supporting Public Health Policy: Preliminary Results of MAPEC_LIFE Project
Authors: Elisabetta Ceretti, Silvia Bonizzoni, Alberto Bonetti, Milena Villarini, Marco Verani, Maria Antonella De Donno, Sara Bonetta, Umberto Gelatti
Abstract:
Introduction: Air pollution is a global problem. In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and particulate matter as carcinogenic to human. The study of the health effects of air pollution in children is very important because they are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. Methods: The study was carried out on 6-8-year-old children living in five Italian towns in two different seasons. Two biomarkers of early biological effects, primary DNA damage detected with the comet assay and frequency of micronuclei, were investigated in buccal cells of children. Details of children diseases, socio-economic status, exposures to other pollutants and life-style were collected using a questionnaire administered to children’s parents. Child exposure to urban air pollution was assessed by analysing PM0.5 samples collected in the school areas for PAHs and nitro-PAHs concentration, lung toxicity and in vitro genotoxicity on bacterial and human cells. Data on the chemical features of the urban air during the study period were obtained from the Regional Agency for Environmental Protection. The project created also the opportunity to approach the issue of air pollution with the children, trying to raise their awareness on air quality, its health effects and some healthy behaviors by means of an educational intervention in the schools. Results: 1315 children were recruited for the study and participate in the first sampling campaign in the five towns. The second campaign, on the same children, is still ongoing. The preliminary results of the tests on buccal mucosa cells of children will be presented during the conference as well as the preliminary data about the chemical composition and the toxicity and genotoxicity features of PM0.5 samples. The educational package was tested on 250 children of the primary school and showed to be very useful, improving children knowledge about air pollution and its effects and stimulating their interest. Conclusions: The associations between levels of air pollutants, air mutagenicity and biomarkers of early effects will be investigated. A tentative model to calculate the global absolute risk of having early biological effects for air pollution and other variables together will be proposed and may be useful to support policy-making and community interventions to protect children from possible health effects of air pollutants.Keywords: air pollution exposure, biomarkers of early effects, children, public health policy
Procedia PDF Downloads 3321930 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)
Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa
Abstract:
The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect
Procedia PDF Downloads 3211929 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 441928 On the Road towards Effective Administrative Justice in Macedonia, Albania and Kosovo: Common Challenges and Problems
Authors: Arlinda Memetaj
Abstract:
A sound system of administrative justice represents a vital element of democratic governance. The proper control of public administration consists not only of a sound civil service framework and legislative oversight, but empowerment of the public and courts to hold public officials accountable for their decision-making through the application of fair administrative procedural rules and the use of appropriate administrative appeals processes and judicial review. The establishment of both effective public administration and administrative justice system has been for a long period of time among the most ‘important and urgent’ final strategic objectives of almost any country in the Balkans region, including Macedonia, Albania and Kosovo. Closely related to this is their common strategic goal to enter the membership in the European Union, which requires fulfilling of many criteria and standards as incorporated in EU acquis communautaire. The latter is presently done with the framework of the Stabilization and Association Agreement which each of these countries has concluded with the EU accordingly. To above aims, each of the three countries has so far adopted a huge series of legislative and strategic documents related to any aspects of their individual administrative justice system. ‘Changes and reforms’ in this field have been thus the most frequent terms being used in any of these countries. The three countries have already established their own national administrative judiciary, while permanently amending their laws on the general administrative procedure introducing thereby considerable innovations concerned. National administrative courts are expected to have crucial important role within the broader judiciary systems-related reforms of these countries; they are designed to check the legality of decisions of the state administration with the aim to guarantee an effective protection of human rights and legitimate interests of private persons through a regular, conform, fast and reasonable judicial administrative process. Further improvements in this field are presently an integral crucial part of all the relevant national strategic documents including the ones on judiciary reform and public administration reform, as adopted by each of the three countries; those strategic documents are designed among others to provide effective protection of their citizens` rights` of administrative justice. On the basis of the later, the paper finally is aimed at highlighting selective common challenges and problems of the three countries on their European road, while claiming (among others) that the current status quo situation in each of them may be overcome only if there is a proper implementation of the administrative courts decisions and a far stricter international monitoring process thereof. A new approach and strong political commitment from the highest political leadership is thus absolutely needed to ensure the principles of transparency, accountability and merit in public administration. The main methods used in this paper include the analytical and comparative ones due to the very character of the paper itself.Keywords: administrative courts , administrative justice, administrative procedure, benefit, effective administrative justice, human rights, implementation, monitoring, reform
Procedia PDF Downloads 1541927 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 43