Search results for: G protein α subunit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2397

Search results for: G protein α subunit

1197 Light-Controlled Gene Expression in Yeast

Authors: Peter. M. Kusen, Georg Wandrey, Christopher Probst, Dietrich Kohlheyer, Jochen Buchs, Jorg Pietruszkau

Abstract:

Light as a stimulus provides the capability to develop regulation techniques for customizable gene expression. A great advantage is the extremely flexible and accurate dosing that can be performed in a non invasive and sterile manner even for high throughput technologies. Therefore, light regulation in a multiwell microbioreactor system was realized providing the opportunity to control gene expression with outstanding complexity. A light-regulated gene expression system in Saccharomyces cerevisiae was designed applying the strategy of caged compounds. These compounds are photo-labile protected and therefore biologically inactive regulator molecules which can be reactivated by irradiation with certain light conditions. The “caging” of a repressor molecule which is consumed after deprotection was essential to create a flexible expression system. Thereby, gene expression could be temporally repressed by irradiation and subsequent release of the active repressor molecule. Afterwards, the repressor molecule is consumed by the yeast cells leading to reactivation of gene expression. A yeast strain harboring a construct with the corresponding repressible promoter in combination with a fluorescent marker protein was applied in a Photo-BioLector platform which allows individual irradiation as well as online fluorescence and growth detection. This device was used to precisely control the repression duration by adjusting the amount of released repressor via different irradiation times. With the presented screening platform the regulation of complex expression procedures was achieved by combination of several repression/derepression intervals. In particular, a stepwise increase of temporally-constant expression levels was demonstrated which could be used to study concentration dependent effects on cell functions. Also linear expression rates with variable slopes could be shown representing a possible solution for challenging protein productions, whereby excessive production rates lead to misfolding or intoxication. Finally, the very flexible regulation enabled accurate control over the expression induction, although we used a repressible promoter. Summing up, the continuous online regulation of gene expression has the potential to synchronize gene expression levels to optimize metabolic flux, artificial enzyme cascades, growth rates for co cultivations and many other applications addicted to complex expression regulation. The developed light-regulated expression platform represents an innovative screening approach to find optimization potential for production processes.

Keywords: caged-compounds, gene expression regulation, optogenetics, photo-labile protecting group

Procedia PDF Downloads 326
1196 Macronutrients and the FTO Gene Expression in Hypothalamus: A Systematic Review of Experimental Studies

Authors: Saeid Doaei

Abstract:

The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of the existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In conclusion, the level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.

Keywords: obesity, gene expression, FTO, macronutrients

Procedia PDF Downloads 267
1195 Amyloid-β Fibrils Remodeling by an Organic Molecule: Insight from All-Atomic Molecular Dynamics Simulations

Authors: Nikhil Agrawal, Adam A. Skelton

Abstract:

Alzheimer’s disease (AD) is one of the most common forms of dementia, which is caused by misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid-β fibrils (Aβ fibrils). To disrupt the remodeling of Aβ fibrils, a number of candidate molecules have been proposed. To study the molecular mechanisms of Aβ fibrils remodeling we performed a series of all-atom molecular dynamics simulations, a total time of 3µs, in explicit solvent. Several previously undiscovered candidate molecule-Aβ fibrils binding modes are unraveled; one of which shows the direct conformational change of the Aβ fibril by understanding the physicochemical factors responsible for binding and subsequent remodeling of Aβ fibrils by the candidate molecule, open avenues into structure-based drug design for AD can be opened.

Keywords: alzheimer’s disease, amyloid, MD simulations, misfolded protein

Procedia PDF Downloads 347
1194 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition

Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri

Abstract:

Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.

Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation

Procedia PDF Downloads 326
1193 Study on the Effect of Vitamin D on the Biochemical Parameters in Cyprinus carpio

Authors: Mojdeh Chelemal Dezfoul Nejad, Ali Mohammadzadeh Shobeagar, Mehrzad Mesbah

Abstract:

This study was conducted in order to characterize the different levels of dietary vitamin D on some of biochemical parameters of Cyprinus carpio. For this purpose, 180 pieces of Cyprinus carpio with an average weight of 20-25 grams were divided into four treatments and each treatment was divided into three replications and treatments were fed at three different doses (1000 IU, 3000 IU, 5000 IU) of vitamin D for 60 days. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. Based on the results significant difference was observed on the mean amount of total protein, urea, glucose and cholesterol between treatments (p < 0.05). But, there was no significant difference in the mean amount of triglyceride and albumin with the different diets designed for this experiment (p > 0.05).

Keywords: Cyprinus carpio, vitamin D, biochemical parameters, glucose

Procedia PDF Downloads 349
1192 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis

Authors: Xi Chen, King-Yip Cheng

Abstract:

Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.

Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes

Procedia PDF Downloads 67
1191 Study on the Effects of Different Levels of Dietary Vitamin C on Some of Biochemical Parameters of Serum in Barbuas

Authors: M. Chelemal Dezfoul Nejad, M. Moradi, M. Mesbah, M. Javaheri

Abstract:

This study was conducted in order to characterize the different levels of dietary vitamin C on some of biochemical parameters of Barbus grypus. For this purpose 300 Barbus grypus were divided into 15 groups. Five levels of vitamin C (0, 200, 400, 800, 1600 mg kg-1 diet) and their combination were used to prepare five experimental diets. The fish were fed 3% of their wet b.wt. per day for a 60 days period. Blood samples were obtained from six fish of each tank at the end of experiment. The results reveal that fish fed diets containing 1600 mg kg-1 vitamin C had a significant decrease in the mean amount of cholesterol, glucose and triglyceride (p<0.05). Also, there was no significant difference in the mean amount of total protein, albumin, BuN, phosphorus, sodium and potassium between the fish fed with the different diets designed for this experiment (p>0.05).

Keywords: Barbus grypus, vitamin C, biochemical parameters, diet

Procedia PDF Downloads 453
1190 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 259
1189 Evaluation of Moringa oleifera in Decolourization of Dyes in Textile Wastewater

Authors: Nagia Ali, R. S. R. El-Mohamedy

Abstract:

The purpose of this paper is to irradiate the dyes biologically through the use of Moreinga oleifera. The study confirms the potential use of Moringa oleifera in decolourization of dyes and thus opens up a scope for future analysis pertaining to its performance in treatment of textile effluent. In this paper, the ability of natural products in removing dyes was tested using two reactive dyes and one acid dye. After a preliminary screening for dye removal capacity, a vegetal protein extract derived from Moeringa oleifera seed was fully studied. The influences of several parameters such as pH, temperature or initial dye concentration were tested and the behavior of coagulants was compared. It was found that dye removal decreased as pH increased. Temperature did not seem to have a considerable effect, while initial dye concentration appeared to be a very important variable.

Keywords: Moreinga oleifera, decolourization, waste water, reactive dyes, acid dyes

Procedia PDF Downloads 366
1188 Investigation of Astrocyte Physiology on Stiffness-Controlled Cellulose Acetate Nanofiber as a Tissue Scaffold

Authors: Sun Il Yu, Jung Hyun Joo, Hwa Sung Shin

Abstract:

Astrocytes are known as dominant cells in CNS and play a role as a supporter of CNS activity and regeneration. Recently, three-dimensional culture of astrocytes were actively applied to understand in vivo astrocyte works. Electrospun nanofibers are attractive for 3D cell culture system because they have a high surface to volume ratio and porous structure, and have already been used for 3D astrocyte cultures. In this research, the stiffness of cellulose acetate (CA) nanofiber was controlled by heat treatment. As stiffness increased, astrocyte cell viability and adhesion increased. Reactivity of astrocyte was also upregulated in stiffer CA nanofiber in terms of GFAP, an intermediate filament protein. Finally, we demonstrated that stiffness-controllable CA is attractive for astrocyte tissue engineering.

Keywords: astrocyte, cellulose acetate, nanofiber, tissue scaffold

Procedia PDF Downloads 355
1187 Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro

Authors: Adebola Ajayi, Olakunle M. Makanjuola

Abstract:

The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer.

Keywords: particle sizes, maize flour, quality, Kokoro

Procedia PDF Downloads 197
1186 Preservation of Historical Zelkova carpinifolia Wooden Structure in Humid Weather

Authors: A. Mahshid Kakouei, B. Kumaran Suberamanin, C. Sabzali Musa Kahn, D. Mina Kakouei

Abstract:

This study aims to identify suitable conservative product for the conservation and restoration of historical Zelkova Carpinifolia wood located in humid weather. The superficial properties and hardness of 14 compounds treated with several consolidants were compared. The consolidants have been applied alone, with synthetic resin or with protein glues and natural resins by the brushing method. Colorimetric measurements, observation methods and hardness tests were conducted before and after aging to verify the possible changes of the treated wood and the consolidating resistance. The compound 1:2 of Butvar B98 and sandarac in 5% ethanol was found to be more effective, providing a suitable compound compared to the other consolidants tested.

Keywords: Zelkova carpinifolia, consolidation, synthetic resin, penetration depth, hardness

Procedia PDF Downloads 357
1185 Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut

Authors: Ajay B. C., Meena H. N., Dagla M. C., Narendra Kumar, Makwana A. D., Bera S. K., Kalariya K. A., Singh A. L.

Abstract:

The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates.

Keywords: correlation, dominance variance, mineral elements, peanut

Procedia PDF Downloads 413
1184 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt

Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary

Abstract:

Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).

Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene

Procedia PDF Downloads 613
1183 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States

Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh

Abstract:

Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.

Keywords: bistability, diabetes, feedback and crosstalk, obesity

Procedia PDF Downloads 275
1182 Effects of Cassava Pulp Fermentation by Yeast on Meat Goats Performances and Nitrogen Retention

Authors: S. Paengkoum, P. Paengkoum, W. Kaewwongsa

Abstract:

Twenty-four male growing goats were randomly assigned to a Randomized Complete Block Design. Dietary treatments were different level of feeding concentrate diet at 1.0, 1.5, 2.0, and 2.5% of body weight (BW). The results showed that average daily gain, microbial N supply, N retention of meat goats in the group of feeding level at 2.0% BW and 2.5% BW were significantly higher (P<0.05) than those goats fed with feeding levels of 1.0% BW and 1.5% BW. Based on this result the conclusion can be made that using 75% fermented cassava pulp by Saccharomyces cerevisiae as the main source of protein to completely replace soybean meal was beneficial to meat goats in terms of feed intake. The feeding concentrate at levels between 2.0-2.5% BW gives highest in the growth of meat goat in this experiment.

Keywords: cassava pulp, yeast, goat, nitrogen retention

Procedia PDF Downloads 245
1181 Physicochemical Properties of Moringa oleifera Seeds

Authors: Oyewusi Peter Ayodele, Onipede Ayodeji

Abstract:

Our research focuses on some physicochemical parameters of Moringa Oleifera seed meal and its seed oil to determine its nutritional quality. Proximate, mineral, and vitamin analyses were performed on the defatted seed meal, while fatty acid determination was carried out on the seed oil. The results of the proximate composition show moisture content (3.52 ± 0.01), ash (2.80 ± 0.33), crude fibre (3.92 ± 0.01), protein (42.96 ± 0.05), crude fat (7.04 ± 0.01) and carbohydrate (36.79 ± 0.04). The mineral composition shows that the seed is rich in Ca, K, and Na with 220ppm, 205ppm, and 118ppm, respectively. The seed has vitamins A and C with 2.17 ± 0.01mg/100g and 6.95 ± 0.00 mg/100g respectively. The seed also contains 56.62 %, 38.50 %, and 5.24 % saturated, monounsaturated, and polyunsaturated fatty acids, respectively. It could be illustrated that Moringa seeds and their oil can be considered potential sources for both dietary and industrial purposes.

Keywords: Moringa oleifera seed, chemical composition, fatty acid, proximate, minerals and vitamins compositions

Procedia PDF Downloads 288
1180 Cloning and Characterization of UDP-Glucose Pyrophosphorylases from Lactobacillus kefiranofaciens and Rhodococcus wratislaviensis

Authors: Mesfin Angaw Tesfay

Abstract:

Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes, serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein, two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli, and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg, respectively. Currently, their kinetic properties are under investigation.

Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, glycosylation

Procedia PDF Downloads 24
1179 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice

Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath

Abstract:

Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.

Keywords: amifostine, fibrosis, inflammation, lung injury radiation

Procedia PDF Downloads 510
1178 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 31
1177 Purification and Characterization of Phycoerythrin from a Mesophilic Cyanobacterium Nostoc piscinale PUPCCC 405.17

Authors: Sandeep Kaur

Abstract:

Phycoerythrin (PE) from the mesophilic filamentous cyanobacterium Nostoc piscinale PUPCCC 405.17, a good producer of phycobiliproteins, has been characterized in terms of their unit assembly and stability. The phycoerythrin was extracted by freeze-thawing the cells in water, concentrated by ammonium sulphate fractionation and purified by anion exchange chromatography. The purification process resulted in 2.90 fold increase in phycoerythrin purity reaching to 1.54. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis of purified PE demonstrated three protein bands of 14.3, 27.54 and 39.81 kDa. The native PE also showed one band of 125.87 kDa, assumed to be a dimer (αβ)2γ based on results of non-denaturing PAGE. Lyophilized powder PE was more stable compared to phycoerythrin in the solution. The half-life of dry PE is 80 days when stored at 4 °C under dark. The phycoerythrin from this organism has potential applications in food as natural colour and as a fluorescent marker.

Keywords: characterization, Nostoc piscinale, phycoerythrin, purification

Procedia PDF Downloads 140
1176 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products

Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya

Abstract:

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.

Keywords: advance glycation endproducts, glycation, gold nano particle, sensor

Procedia PDF Downloads 304
1175 Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends

Authors: Mbaeyi-Nwaoha, Ifeoma Elizabeth, Orngu, Africa Orngu

Abstract:

Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%.

Keywords: oyster mushroom (Pleurotus ostreatus), sesame seed (Sesamum indicum), yellow maize (Zea mays, instant breakfast cereals

Procedia PDF Downloads 203
1174 Fatty Acid Composition and Therapeutic Effects of Beebread

Authors: Sibel Silici

Abstract:

Palynological spectrum, proximate and fatty acids composition of eight beebread samples obtained from different geographical origins were determined. Beebread moisture contents varied between 11.4-15.9 %, ash 1.9-2.54 %, fat 5.9-11.5 %, and protein between 14.8-24.3 %. To our knowledge, this is the first study investigating fatty acids (FAs) composition of the selected monofloral beebreads. A total of thirty-seven FAs were identified. Of these (9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoic acid, (9Z, 12Z)-octadeca-9, 12-dienoic acid, hexadecanoic acid, (Z)-octadec-9-enoic acid, (Z)-icos-11-enoic acid and octadecanoic acid were the most abundant in all the samples. Cotton beebread contained the highest level of ω-3 FAs, 41.3 %. Unsaturated/saturated FAs ratios ranged between 1.38 and 2.39 indicating that beebread is a good source of unsaturated FAs. The pollen, proximate and FAs composition of beebread samples of different botanical and geographical origins varied significantly.

Keywords: bee bread, fatty acid composition, proximate composition, pollen analysis

Procedia PDF Downloads 260
1173 Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-Tuberculosis Candidates

Authors: Ruswanto Ruswanto, Richa Mardianingrum, Tita Nofianti, Nur Rahayuningsih

Abstract:

Tuberculosis (TB) is a chronic disease as a result of Mycobacterium tuberculosis. It can affect all age groups, and hence, is a global health problem that causes the death of millions of people every year. One of the drugs used in tuberculosis treatment is isonicotinohydrazide. In this study, N'-benzoylisonicotinohydrazide derivative compounds (a-l) were prepared using acylation reactions between isonicotinohydrazide and benzoyl chloride derivatives, through the reflux method. Molecular docking studies suggested that all of the compounds had better interaction with Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) than isonicotinohydrazide. It can be concluded that N'-benzoylisonicotinohydrazide derivatives (a-l) could be used as anti-tuberculosis candidates. From the docking results revealed that all of the compounds interact well with InhA, with compound g (N'-(3-nitrobenzoyl)isonicotinohydrazide) exhibiting the best interaction.

Keywords: anti-tuberculosis , docking, InhA, N'-benzoylisonicotinohydrazide, synthesis

Procedia PDF Downloads 310
1172 Insecticidal Activity of Bacillus Thuringiensis Strain AH-2 Against Hemiptera Insects Pests: Aphis. Gossypii, and Lepidoptera Insect Pests: Plutella Xylostella and Hyphantria Cunea

Authors: Ajuna B. Henry

Abstract:

In recent decades, climate change has demanded biological pesticides; more Bt strains are being discovered worldwide, some containing novel insecticidal genes while others have been modified through molecular approaches for increased yield, toxicity, and wider host target. In this study, B. thuringiensis strain AH-2 (Bt-2) was isolated from the soil and tested for insecticidal activity against Aphis gossypii (Hemiptera: Aphididae) and Lepidoptera insect pests: fall webworm (Hyphantria cunea) and diamondback moth (Plutella xylostella). A commercial strain B. thuringiensis subsp. kurstaki (Btk), and a chemical pesticide, imidacloprid (for Hemiptera) and chlorantraniliprole (for Lepidoptera), were used as positive control and the same media (without bacterial inoculum) as a negative control. For aphidicidal activity, Bt-2 caused a mortality rate of 70.2%, 78.1% or 88.4% in third instar nymphs of A. gossypii (3N) at 10%, 25% or 50% culture concentrations, respectively. Moreover, Bt-2 was effectively produced in cost-effective (PB) supplemented with either glucose (PBG) or sucrose (PBS) and maintained high aphicidal efficacy with 3N mortality rates of 85.9%, 82.9% or 82.2% in TSB, PBG or PBS media, respectively at 50% culture concentration. Bt-2 also suppressed adult fecundity by 98.3% compared to only 65.8% suppression by Btk at similar concentrations but was slightly lower than chemical treatment, which caused 100% suppression. Partial purification of 60 – 80% (NH4)2SO4 fraction of Bt-2 aphicidal proteins purified on anion exchange (DEAE-FF) column revealed a 105 kDa aphicidal protein with LC50 = 55.0 ng/µℓ. For Lepidoptera pests, chemical pesticide, Bt-2, and Btk cultures, mortality of 86.7%, 60%, and 60% in 3rd instar larvae of P. xylostella, and 96.7%, 80.0%, and 93.3% in 6th instar larvae of H. cunea, after 72h of exposure. When the entomopathogenic strains were cultured in a cost-effective PBG or PBS, the insecticidal activity in all strains was not significantly different compared to the use of a commercial medium (TSB). Bt-2 caused a mortality rate of 60.0%, 63.3%, and 50.0% against P. xylostella larvae and 76.7%, 83.3%, and 73.3% against H. cunea when grown in TSB, PBG, and PBS media, respectively. Bt-2 (grown in cost-effective PBG medium) caused a dose-dependent toxicity of 26.7%, 40.0%, and 63.3% against P. xylostella and 46.7%, 53.3%, and 76.7% against H. cunea at 10%, 25% and 50% culture concentration, respectively. The partially purified Bt-2 insecticidal proteins fractions F1, F2, F3, and F4 (extracted at different ratios of organic solvent) caused low toxicity (50.0%, 40.0%, 36.7%, and 30.0%) against P. xylostella and relatively high toxicity (56.7%, 76.7%, 66.7%, and 63.3%) against H. cunea at 100 µg/g of artificial diets. SDS-PAGE analysis revealed that a128kDa protein is associated with toxicity of Bt-2. Our result demonstrates a medium and strong larvicidal activity of Bt-2 against P. xylostella and H. cunea, respectively. Moreover, Bt-2 could be potentially produced using a cost-effective PBG medium which makes it an effective alternative biocontrol strategy to reduce chemical pesticide application.

Keywords: biocontrol, insect pests, larvae/nymph mortality, cost-effective media, aphis gossypii, plutella xylostella, hyphantria cunea, bacillus thuringiensi

Procedia PDF Downloads 19
1171 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 175
1170 The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates

Authors: L. Strauta, S. Muižniece-Brasava

Abstract:

Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (Vigna unguiculata (L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g-1 of moisture - 28±4N, but the volume mass of the samples with additional 9 g100g-1 of water was 263±3 g L-1; all samples were approximately 7±1mm long.

Keywords: cow pea, extrusion–cooking, moisture, size

Procedia PDF Downloads 207
1169 The Influence of Newest Generation Butyrate Combined with Acids, Medium Chain Fatty Acids and Plant Extract on the Performance and Physiological State of Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Asta Raceviciute-Stupeliene, Agila Dauksiene, Romas Gruzauskas, Virginijus Slausgalvis, Jamal Al-Saifi

Abstract:

The aim of the present study was to investigate the effect of butyrate, acids, medium-chain fatty acids and plant extract mixture on performance, blood and gastrointestinal tract characteristics of laying hens’. For the period of 8 weeks, 24 Hisex Brown laying hens were randomly assigned to 2 dietary treatments: 1) control wheat-corn-soybean meal based diet (Control group), 2) control diet supplemented with the mixture of butyrate, acids, medium chain fatty acids and plant extract (Lumance®) at the level of 1.5 g/kg of feed (Experimental group). Hens were fed with a crumbled diet at 125 g per day. Housing and feeding conditions were the same for all groups and met the requirements of growth for laying hens of Hisex Brown strain. In the blood serum total protein, bilirubin, cholesterol, DTL- and MTL- cholesterol, triglycerides, glucose, GGT, GOT, GPT, alkaline phosphatase, alpha amylase, contents of c-reactive protein, uric acid, and lipase were analyzed. Development of intestines and internal organs (intestinal length, intestinal weight, the weight of glandular and muscular stomach, pancreas, heart, and liver) were determined. The concentration of short chain fatty acids in caecal content was measured using the method of HPLC. The results of the present study showed that 1.5 g/kg supplementation of feed additive affected egg production and feed conversion ratio for the production of 1 kg of egg mass. Dietary supplementation of analyzed additive in the diets increased the concentration of triglycerides, GOT, alkaline phosphatase and decreased uric acid content compared with the control group (P<0.05). No significant difference for others blood indices in comparison to the control was observed. The addition of feed additives in laying hens’ diets increased intestinal weight by 11% and liver weight by 14% compared with the control group (P<0.05). The short chain fatty acids (propionic, acetic and butyric acids) in the caecum of laying hens in experimental groups decreased compared with the control group. The supplementation of the mixture of butyrate, acids, medium-chain fatty acids and plant extract at the level of 1.5 g/kg in the laying hens’ diets had the effect on the performance, some gastrointestinal tract function and blood parameters of laying hens.

Keywords: acids, butyrate, laying hens, MCFA, performance, plant extract, psysiological state

Procedia PDF Downloads 296
1168 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 66