Search results for: structural and magnetic properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12830

Search results for: structural and magnetic properties

620 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 72
619 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India

Authors: Kulin Dave, Kapil Mohan

Abstract:

Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.

Keywords: DEEPSOIL v 7.0, ground response analysis, pressure-dependent modified Kodner Zelasko model, MKZ model, response spectra, shear wave velocity

Procedia PDF Downloads 132
618 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment

Authors: Zexiao Zheng, Irene M. C. Lo

Abstract:

Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.

Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes

Procedia PDF Downloads 151
617 Influence of Variable Calcium Content on Mechanical Properties of Geopolymer Synthesized at Different Temperature and Moisture Conditions

Authors: Suraj D. Khadka, Priyantha W. Jayawickrama

Abstract:

In search of a sustainable construction material, geopolymer has been investigated for past decades to evaluate its advantage over conventional products. Synthesis of geopolymer requires a source of aluminosilicate mixed with sodium hydroxide and sodium silicate at different proportions to maintain a Si/Al molar ratio of 1-3 and Na/Al molar ratio of unity. A comprehensive geopolymer study was performed with Metakaolin and Class C Fly ash as primary aluminosilicate sources. Synthesized geopolymer was analyzed for time-dependent viscosity, setting period and strength at varying initial moisture content, curing temperature and humidity. Different concentration of Ca(OH)₂ and CaSO₄.2H₂O were added to vary the amount of calcium contained in synthesized geopolymer. Influence of calcium content in unconfined compressive strength behavior of geopolymer were analyzed. Finally, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was performed to investigate the hardened product. It was observed that fly ash based geopolymer had shortened setting time and faster increase in viscosity as compared to geopolymer synthesized from metakaolin. This was primarily attributed to higher calcium content resulting in formation of calcium silicate hydrates (CSH). SEM-EDS was performed to verify the presence of CSH phases. Spectral analysis of geopolymer prepared by addition of Ca(OH)₂ and CaSO₄.2H₂O indicated higher CSH phases at higher concentration. It was observed that lower concentration of added calcium favored strength gain in geopolymer. However, at higher calcium concentration, decrease in strength was observed. Strength variation was also observed with humidity at initial curing condition. At 100% humidity, geopolymer with added calcium presented higher strength compared to samples cured at ambient humidity condition (40%). Reduction in strength in these samples at lower humidity was primarily attributed to reduction in moisture content in specimen due to the formation of CSH phases and loss of moisture through evaporation. For low calcium content geopolymers, with increase in temperature, gain in strength was observed with maximum strength observed at 200 ˚C. However, samples with higher calcium content demonstrated severe cracking resulting in low strength at elevated temperatures.

Keywords: calcium silicate hydrates, geopolymer, humidity, Scanning Electron Microscopy-Energy Dispersive Spectroscopy, unconfined compressive strength

Procedia PDF Downloads 122
616 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 162
615 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails

Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali

Abstract:

When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.

Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis

Procedia PDF Downloads 34
614 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete

Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan

Abstract:

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Keywords: characterization, furnace, pozzolanic behavior, rice husk ash

Procedia PDF Downloads 104
613 Uniform and Controlled Cooling of a Steel Block by Multiple Jet Impingement and Airflow

Authors: E. K. K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

During the cooling of hot metals by the circulation of water in canals formed by boring holes in the metal, the rapid phase change of the water due to the high initial temperature of the metal leads to a non homogenous distribution of the phases within the canals. The liquid phase dominates towards the entrance of the canal while the gaseous phase dominates towards the exit. As a result of the different thermal properties of both phases, the metal is not uniformly cooled. This poses a problem during the cooling of moulds, where a uniform temperature distribution is needed in order to ensure the integrity of the part being formed. In this study, the simultaneous use of multiple water jets and an airflow for the uniform and controlled cooling of a steel block is investigated. A circular hole is bored at the centre of the steel block along its length and a perforated steel pipe is inserted along the central axis of the hole. Water jets that impact the internal surface of the steel block are generated from the perforations in the steel pipe when the water within it is put under pressure. These jets are oriented in the opposite direction to that of gravity. An intermittent airflow is imposed in the annular space between the steel pipe and the surface of hole bored in the steel block. The evolution of the temperature with respect to time of the external surface of the block is measured with the help of thermocouples and an infrared camera. Due to the high initial temperature of the steel block (350 °C), the water changes phase when it impacts the internal surface of the block. This leads to high heat fluxes. The strategy used to control the cooling speed of the block is the intermittent impingement of its internal surface by the jets. The intervals of impingement and of non impingement are varied in order to achieve the desired result. An airflow is used during the non impingement periods as an additional regulator of the cooling speed and to improve the temperature homogeneity of the impinged surface. After testing different jet positions, jet speeds and impingement intervals, it’s observed that the external surface of the steel block has a uniform temperature distribution along its length. However, the temperature distribution along its width isn’t uniform with the maximum temperature difference being between the centre of the block and its edge. Changing the positions of the jets has no significant effect on the temperature distribution on the external surface of the steel block. It’s also observed that reducing the jet impingement interval and increasing the non impingement interval slows down the cooling of the block and improves upon the temperature homogeneity of its external surface while increasing the duration of jet impingement speeds up the cooling process.

Keywords: cooling speed, homogenous cooling, jet impingement, phase change

Procedia PDF Downloads 120
612 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 100
611 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 55
610 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 59
609 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery

Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović

Abstract:

Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.

Keywords: rooting, Populus alba, nursery, clonal technology

Procedia PDF Downloads 58
608 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 274
607 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 475
606 Stilbenes as Sustainable Antimicrobial Compounds to Control Vitis Vinifera Diseases

Authors: David Taillis, Oussama Becissa, Julien Gabaston, Jean-Michel Merillon, Tristan Richard, Stephanie Cluzet

Abstract:

Nowadays, there is a strong pressure to reduce the phytosanitary inputs of synthetic chemistry in vineyards. It is, therefore, necessary to find viable alternatives in order to protect the vine against its major diseases. For this purpose, we suggest the use of a plant extract enriched in antimicrobial compounds. Being produced from vine trunks and roots, which are co-products of wine production, the extract produced is part of a circular economy. The antimicrobial molecules present in this plant material are polyphenols and, more particularly, stilbenes, which are derived from a common base, the resveratrol unit, and that are well known vine phytoalexins. The stilbenoids were extracted from trunks and roots (30/70, w/w) by a double extraction with ethyl acetate followed by enrichment by liquid-liquid extraction. The produced extract was characterized by UHPLC-MS, then its antimicrobial activities were tested on Plasmopara viticola and Botrytis cinerea in the laboratory and/or in greenhouse and in vineyard. The major compounds were purified, and their antimicrobial activity was evaluated on B. cinerea. Moreover, after its spraying, the effect of the stilbene extract on the plant defence status was evaluated by analysis of defence gene expression. UHPLC-MS analysis revealed that the extract contains 50% stilbenes with resveratrol, ε-viniferin and r-viniferin as major compounds. The extract showed antimicrobial activities on P. viticola with IC₅₀ and IC₁₀₀ respectively of 90 and 300 mg/L in the laboratory. In addition, it inhibited 40% of downy mildew development in greenhouse. However, probably because of the sensitivity of stilbenes to the environment, such as UV degradation, no activity has been observed in vineyard towards P. viticola development. For B. cinerea, the extract IC50 was 123 mg/L, with resveratrol and ε-viniferin being the most active stilbenes (IC₅₀ of 88 and 142 mg/L, respectively). The analysis of the expression of defence genes revealed that the extract can induce the expression of some defence genes 24, 48, and 72 hours after treatment, meaning that the extract has a defence-stimulating effect at least for the first three days after treatment. In conclusion, we produced a plant extract enriched in stilbenes with antimicrobial properties against two major grapevine pathogenic agents P. viticola and B. cinerea. In addition, we showed that this extract displayed eliciting activity of plant defences. This extract can therefore represent, after formulation development, a viable eco-friendly alternative for vineyard protection. Subsequently, the effect of the stilbenoid extract on primary metabolism will be evaluated by quantitative NMR.

Keywords: antimicrobial, bioprotection, grapevine, Plasmopara viticola, stilbene

Procedia PDF Downloads 207
605 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 255
604 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 172
603 The Importance of the Phases of Information, Diagnosis, Planning, Intervention and Management in a Historic Center

Authors: Giovanni Duran Polo

Abstract:

Demonstrate the importance of the stages such as Information, Diagnosis, Management, and Intervention is fundamental to have a historical, live, and quality inhabited center. One of the major actions to take is to promote the concept of the management of a historic center with harmonious development. For that, concerned actors should strengthen the concept that said historic center may be the neighborhood of all and for all. The centers of historical cities, presented as any other urban area, social, environmental issues etc; yet they get added value that have no other city neighborhoods. The equity component, either by the urban plan, or environmental quality offered properties of architectural, landscape or some land uses are the differentiating element, while the tool that makes them attractive face pressure exerted by new housing developments or shopping centers. That's why through the experience of working in historical centers, they are declared the actions in heritage areas. This paper will show how the encounter with each of these places are trying to take the phases of information, to gather all the data needed to be closer to the territory with specific data, diagnosis; which allowed the actors to see what state they were, felt how the heart is related to the rest of the city, show what problems affected the situation and what potential it had to compete in a global market. Also, to discuss the importance of the organization, as it is legal and normative basis for it have an order and a concept, when you know what can and what cannot, in an area where the citizen has many myth or history, when he wanted to intervene in protected buildings. It is also appropriate to show how it could develop the intervention phase, where the shares on the tangible elements and intervention for the protection of the heritage property are executed. The management is the final phase which will carry out all that was raised on paper, it's time to orient, explain, persuade, promote, and encourage citizens to take care of the heritage. It is profitable and also an obligation and it is not an insurmountable burden. It has to be said this is the time to pull all the cards to make the historical center and heritage becoming more alive today. It is the moment to make it more inhabited and to transformer it into a quality place, so citizens will cherish and understand the importance of such a place. Inhabited historical centers, endowments and equipment required, with trade quality, with constant cultural offer, with well-preserved buildings and tidy, modern and safe public spaces are always attractive for tourism, but first of all, the place should be conceived for citizens, otherwise everything will be doomed to failure.

Keywords: development, diagnosis, heritage historic center, intervention, management, patrimony

Procedia PDF Downloads 391
602 Effect of Farsi gum (Amygdalus Scoparia Spach) in Combination with Sodium Caseinate on Textural, Stability, Sensory Characteristics and Rheological Properties of Whipped Cream

Authors: Samaneh Mashayekhi

Abstract:

Cream (whipped cream) is one of the dairy products that can be used in desserts, pastries, cakes, and ice creams. In this product, some parameters such as taste and flavor, quality stability, whipping ability, and stability of foam after whipping are very important. The objective of this study is applicable of Farsi gum and sodium caseinate in 3 biopolymer ratios (1:1, 1:2, and 2:1) and 0.15, 0.30, and 0.45 %wt. concentrations in whipped cream formulation. Sample without hydrocolloids was considered as a control. Before whipping, viscosity of all creams was increased continuously with increasing shear rate. In addition, the viscosity was increased with the increasing hydrocolloids addition (in constant shear rate). Microscopic observations showed that polydispersity of systems before whipping. Overrun of F, FC11, and FC21 samples were increased (with increasing total hydrocollid concentration 0.15 to 0.30 % wt.); then decreased this parameter with increasing to 0.45 % wt. concentration. However, mean comparison of FC12 samples overrun showed that this value was increased with increasing total hydrocolloids concentration. 0.45FC21 sample had significantly (P<0.05) highest overrun (118.44±9.11). Synersis of whipped cream samples are reduced with hydrocolloid addition. B sample had significantly (P<0.05) highest serum separation (16.66±0.80%), and 0.45FC12 had a low one (5.94±0.19%) in compered with others synersis. Mean comparison of hardness and adhesiveness of whipped cream revealed that Farsi gum addition alone and in combination with sodium caseinate increased the previous textural characteristics. Results exhibited that 0.4FG12 had significantly (P<0.05) highest hardness (267.00±18.38 g).Mean comparison of droplet size of cream sample before whipping displaced that hydrocolloid addition had no significant effect (P>0.05), and mean droplet size of the samples ranged between 1.93-2.16 µm. Generally, the mean droplet size of whipped cream increased after whipping with increasing hydrocolloid concentration (0.15-0.45 % wt.). Color parameter analysis showed that Farsi gum addition alone and in combination with sodium caseinate had no significant effect (P>0.05) on these parameters (Lightness, Redness, and Yellowness). Based on sensory evaluation results, appearance, color, flavor, and taste of whipped creams not influenced by hydrocolloids addition; but 0.45FC12 sample had higher value. Based on the above results, Farsi gum had suggested to potential application in a whipped cream formulation; however, further research need to foundingof their functionality.

Keywords: whipped cream, farsi gum, sodium caseinate, overrun, droplet size, texture analysis, sensory evaluation

Procedia PDF Downloads 92
601 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)

Authors: Devon Simpson

Abstract:

Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.

Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming

Procedia PDF Downloads 185
600 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 102
599 Personalized Infectious Disease Risk Prediction System: A Knowledge Model

Authors: Retno A. Vinarti, Lucy M. Hederman

Abstract:

This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.

Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk

Procedia PDF Downloads 238
598 Luteolin Exhibits Anti-Diabetic Effects by Increasing Oxidative Capacity and Regulating Anti-Oxidant Metabolism

Authors: Eun-Young Kwon, Myung-Sook Choi, Su-Jung Cho, Ji-Young Choi, So Young Kim, Youngji Han

Abstract:

Overweight and obesity have been linked to a low-grade chronic inflammatory response and an increased risk of developing metabolic syndrome including insulin resistance, type 2 diabetes mellitus and certain types of cancers. Luteolin is a dietary flavonoid with anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic properties. However, little is known about the detailed mechanism associated with the effect of luteolin on inflammation-related obesity and its complications. The aim of the present study was to reveal the anti-diabetic effect of luteolin in diet-induced obesity mice using “transcriptomics” tool. Thirty-nine male C57BL/6J mice (4-week-old) were randomly divided into 3 groups and were fed normal diet, high-fat diet (HFD, 20% fat) and HFD+0.005% (w/w) luteolin for 16 weeks. Luteolin improved insulin resistance, as measured by HOMA-IR and glucose tolerance, along with preservation action of pancreatic β-cells, compared to the HFD group. Luteoiln was significantly decreased the levels of leptin and ghrelin that play a pivotal role in energy balance, and the macrophage low-grade inflammation marker sCD163 (soluble Cd antigen 163) in plasma. Activities of hepatic anti-oxidant enzymes (catalase and glutathione peroxidase) were increased, while the levels of plasma transaminase (GOT and GPT) and oxidative damage markers (hepatic mitochondria H2O2 and TBARS) were markedly decreased by luteolin supplementation. In addition, luteolin increased oxidative capacity and fatty acid utilization by presenting decrease in enzyme activities of citrate synthase, cytochrome C oxidase and β-hydroxyacyl CoA dehydrogenase and UCP3 gene expression compared to high-fat diet. Moreover, our microarray results of muscle also revealed down-regulated gene expressions associated with TCA cycle by HFD were reversed to normal level by luteolin treatment. Taken together, our results indicate that luteolin is one of bioactive components for improving insulin resistance by increasing oxidative capacity, modulating anti-oxidant metabolism and suppressing inflammatory signaling cascades in diet-induced obese mice. These results provide possible therapeutic targets for prevention and treatment of diet-induced obesity and its complications.

Keywords: anti-oxidant metabolism, diabetes, luteolin, oxidative capacity

Procedia PDF Downloads 335
597 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 148
596 A Potential Bio-Pesticidal Molecule Derived from Indian Traditional Plant

Authors: Bunindro Nameirakpam, Sonia Sougrapakam, Shannon B. Olsson, Rajashekar Yallappa

Abstract:

Natural sources for new pesticidal compounds hold promise in view of their eco-friendly nature, selectivity and mammalian safety. Despite a large number of plants that show insecticidal activity and diversity of natural chemistry with inherent eco-friendly nature, newer classes of insecticides have eluded discovery. Artemisia vulgaris, known as Mugwort, is a universal herb used for folk medicine and religious purposes throughout the ancient world. In India, the essential oils of Artemisia vulgaris are used for its insecticidal, anti parasiticidal and antimicrobial properties. Traditionally, the dried leaves of Artemisia vulgaris are used to repel insects as well as rats in and around the granaries in the North-East India. Artemisia vulgaris collected during November from different ecological sites were studied for the bio-pesticidal utility against the stored grain pests. The insecticidal activities were found in the crude extracts of n-hexane and methanol from the samples collected in Sikkim and Manipur respectively. Using silica gel column chromatography protocol, we have isolated one novel bioactive molecule from the aerial parts of Artemisia vulgaris L based on various physical-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and mass). The novel bioactive molecule is highly toxic and very low concentration (4.35 µg/l) is needed to control the stored product insects. In additional experiment results clearly showed the involvement of sodium pumps inhibition in the insecticidal action of purified compound in the Sitophilus oryzae. The knockdown activity of the purified compound is concomitant with the in vivo inhibition of Na+/ K+- ATPase. Further, our study showed insignificant differences in the seed germination of control and the treated grains. The lack of adverse effect of the novel bioactive molecule on the seed germination is highly desirable for seed/grain protectant and showing the potential to be developed as possible natural fumigants for the control of stored grain pests. The novel bioactive molecule is selective insecticide with a high margin of safety to mammals and showed promise as novel biopesticide candidate for grain protection. It is believed that Bio-pesticides can serve as the most important pest management tools as far as global safety is concerned.

Keywords: Indian traditional plant, Artemisia vulgaris, bio-pesticides, Na+/ K+- ATPase, seed germination

Procedia PDF Downloads 190
595 An Assessment of Redevelopment of Cessed Properties in the Island City of Mumbai, India

Authors: Palak Patel

Abstract:

Mumbai is one of the largest cities of the country with a population of 12.44 million over 437 Sq.km, and it is known as financial hub of India. In early 20th century, with the expansion of industrialization and growth of port, a huge demand for housing was created. In response to this, government enacted rent controls. Over a period of time, due to rent controls, the existing rental housing stock has deteriorated. Therefore, in last 25 years, government has been focusing on redevelopment of these rental buildings, also called ‘Cessed buildings’, in order to provide better standard of living to the tenants and also, to supply new housing units in the market. In India, developers are the main players in the housing market as they are the supplier of maximum dwelling units in the market. Hence, government attempts are inclined toward facilitating developers for the cessed building redevelopment projects by incentivizing them through making special provisions in the development control regulations. This research focuses on the entire process of redevelopment by the developers and issues faced by the related stakeholders in the same to reduce the stress on housing. It also highlights the loopholes in the current system and inefficient functioning of the process. The research was carried out by interviewing various developers, tenants and landlords in the island city who have already gone through redevelopment. From the case studies, it is very evident that redevelopment is undoubtedly a huge profit making business. In some cases, developers make profit of almost double the amount of the investment. But yet, satisfactory results are not seen on ground. It clearly indicates that there are some issues faced by developers which have not been addressed. Some of these issues include cumbersome legal procedures, negotiations with landlords and tenants, congestion and narrow roads, small size of the plots, informal practicing of ‘Pagdi system’ and financial viability of the project. This research recommends the up gradation of the existing cessed buildings by sharing the repairing and maintenance cost between landlords and tenants and also, income levels of tenants can be traced and housing vouchers or incentives can be provided to those who actual need it so that landlord does not have to subsidize the tenants. For redevelopment, the current interventions are generalized in nature as it does not take on ground issues into the consideration. There is need to identify local issues and give area specific solutions. And also, government should play a role of mediator to ensure all the stakeholders are satisfied and project gets completed on time.

Keywords: cessed buildings, developers, government’s interventions, redevelopment, rent controls, tenants

Procedia PDF Downloads 179
594 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation

Authors: Nawras Kurzom, Avi Mendelsohn

Abstract:

The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.

Keywords: musical tension, declarative memory, learning and memory, musical perception

Procedia PDF Downloads 93
593 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 285
592 Antioxidant and Anti-Lipid Peroxidation Activities of Some Thai Medicinal Plants Traditionally Used for the Treatment of Benign Prostatic Hyperplasia

Authors: Wararut Buncharoen, Kanokporn Saenphet, Supap Saenphet

Abstract:

Benign prostatic hyperplasia (BPH) is a reproductive problem, affecting elderly men worldwide. Several factors particularly free radical reaction and oxidative damage have been contributed to be key factors leading to the development of BPH. A number of medicinal plants with high antioxidant properties are extensively constituted in Thai herbal pharmacopoeia for treating BPH. These plants may prevent or delay the progression of BPH through an antioxidant mechanism. Thus, this study was to prove the antioxidant and anti-lipid peroxidation potential of medicinal plants traditionally used for the treatment of BPH such as Artabotrys harmandii Finet & Gagnep. Miq., Uvaria rufa Blume, Anomianthus dulcis (Dunal) J. Sinclair and Caesalpinia sappan Linn. Antioxidant parameters including free radical (2, 2-azino-bis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS•+), 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) and superoxide) scavenging, ferric reducing power and anti-lipid peroxidation activity were determined in different crude extracts from the stem of these four plants. Total phenolic and ascorbic contents were also investigated. The highest total phenolic content was shown in ethyl acetate crude extract of A. dulcis (510 ± 26.927 µg GAE/g extract) while the highest ascorbic content was found in ethanolic extract of U. rufa (234.727 ± 30.356 µg AAE/g extract). The strongest scavenging activity of ABTS•+ and DPPH• was found in ethyl acetate extract of C. sappan with the IC50 values of 0.469 and 0.255 mg/ml, respectively. The petroleum ether extracts of C. sappan and U. rufa at concentration of 1 mg/ml exhibited high scavenging activity toward superoxide radicals with the inhibition of 37.264 ± 8.672 and 34.434 ± 6.377 %, respectively. Ethyl acetate crude extract of C. sappan displayed the greatest reducing power. The IC50 value of water extract of A. dulcis was 1.326 mg/ml which indicated the strongest activity in the inhibition of lipid-peroxidation among all plant extracts whereas the IC50 value of the standard, butyl hydroxyl toluene was 1.472 µg/ml. Regarding all the obtained results, it can be concluded that the stem of A. dulcis, U. rufa and C. sappan are the potential natural antioxidants and could have an importance as therapeutic agents in the preventing free radicals and oxidative damage related diseases including BPH.

Keywords: anti-lipid peroxidation, antioxidant, benign prostatic hyperplasia, Thai medicinal plants

Procedia PDF Downloads 470
591 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting

Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero

Abstract:

In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.

Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling

Procedia PDF Downloads 131