Search results for: surface runoff water
1510 Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens
Authors: Aleksandar M. Radojković, Jovana M. Ćirković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković
Abstract:
In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems.Keywords: emulsions, essential oils, phytophthora, thuja plicata
Procedia PDF Downloads 901509 Optimisation of Dyes Decolourisation by Bacillus aryabhattai
Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez
Abstract:
Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design
Procedia PDF Downloads 2181508 Late Bronze Age Pigments: Characterization of Mycenaean Pottery with Multi-Analytical Approach
Authors: Elif Doğru, Bülent Kızılduman, Huriye İcil
Abstract:
Throughout history, Cyprus has been involved in various commercial and cultural relationships with different civilizations, owing to its strategic location. Particularly during the Late Bronze Age, Cyprus emerged as a significant region engaged in interactions with the Mycenaeans and other Mediterranean civilizations. Presently, findings from archaeological excavations provide valuable insights into Cyprus' cultural history and its connections with other civilizations. Painted Mycenaean ceramics discovered during the excavations at Kaleburnu-Kral Tepesi (Galinaporni-Vasili), dated to the Late Bronze Age in Cyprus, are considered significant archaeological findings that carry traces of the art and culture of that era, reflecting the island's commercial and cultural connections. Considering these findings, there is a need for archaeometric studies to aid in the understanding of the commercial and cultural ties at Kaleburnu-Kral Tepesi. In line with this need, analytical studies have been initiated concerning the provenance and production techniques of the Mycenaean ceramics discovered in the excavations at Kaleburnu-Kral Tepesi, dated to the Late Bronze Age. In the context of origin analysis studies, it is advocated that understanding the techniques and materials used for the figures and designs applied on Mycenaean ceramics would significantly contribute to a better comprehension of historical contexts. Hence, the adopted approach involves not only the analysis of the ceramic raw material but also the characterization of the pigments on the ceramics as a whole. In light of this, in addition to the studies aimed at determining the provenance and production techniques of the Mycenaean ceramic bodies, the characterization of the pigments used in the decorations of the relevant ceramics has been included in the research scope. Accordingly, this study aims to characterize the pigments used in the decorations of Mycenaean ceramics discovered at Kaleburnu-Kral Tepesi, dated to the Late Bronze Age. The X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) methods have been employed to determine the surface morphology and chemical properties of the Mycenaean pigments. The characterization has been conducted through the combination of multiple analytical methods. The characterization of the pigments of Mycenaean ceramics aims to enhance the scientific perspective adopted for understanding the contributions of Mycenaean ceramics found in Cyprus to the island's culture, by providing scientific data on the types and origins of pigments used during the Late Bronze Age.Keywords: mycenaean, ceramic, provenance, pigment
Procedia PDF Downloads 731507 Curcumin-Loaded Pickering Emulsion Stabilized by pH-Induced Self-Aggregated Chitosan Particles for Encapsulating Bioactive Compounds for Food, Flavor/Fragrance, Cosmetics, and Medicine
Authors: Rizwan Ahmed Bhutto, Noor ul ain Hira Bhutto, Mingwei Wang, Shahid Iqbal, Jiang Yi
Abstract:
Curcumin, a natural polyphenolic compound, boasts numerous health benefits; however, its industrial applications are hindered by instabilities and poor solubility. Encapsulating curcumin in Pickering emulsion presents a promising strategy to enhance its bioavailability. Yet, the development of an efficient and straightforward method to fabricate a natural emulsifier for Pickering emulsion poses a significant challenge. Chitosan has garnered attention due to its non-toxicity and excellent emulsifying properties. This study aimed to prepare four distinct types of self-aggregated chitosan particles using a pH-responsive self-assembling approach. The properties of the aggregated particles were adjusted by pH, degree of deacetylation (DDA), and molecular weight (MW), thereby controlling surface charge, size (ranging from nano to micro and floc), and contact angle. Pickering emulsions were then formulated using these various aggregated particles. As MW and pH increased and DDA decreased, the networked structures of the aggregated particles formed, resulting in highly elastic gels that were more resistant to the breakdown of Pickering emulsion at ambient temperature. With elevated temperatures, the kinetic energy of the aggregated particles increased, disrupting hydrogen bonds and potentially transforming the systems from fluids to gels. The Pickering emulsion based on aggregated particles served as a carrier for curcumin encapsulation. It was observed that DDA and MW played crucial roles in regulating drug loading, encapsulation efficiency, and release profile. This research sheds light on selecting suitable chitosan for controlling the release of bioactive compounds in Pickering emulsions, considering factors such as adjustable rheological properties, microstructure, and macrostructure. Furthermore, this study introduces an environmentally friendly and cost-effective synthesis of pH-responsive aggregate particles without the need for high-pressure homogenizers. It underscores the potential of aggregate particles with various MWs and DDAs for encapsulating other bioactive compounds, offering valuable applications in industries including food, flavor/fragrance, cosmetics, and medicine.Keywords: chitosan, molecular weight, rheological properties, curcumin encapsulation
Procedia PDF Downloads 621506 Translation of the Bible into the Yoruba Language: A Functionalist Approach in Resolving Cultural Problems
Authors: Ifeoluwa Omotehinse Oloruntoba
Abstract:
Through comparative and causal models of translation, this paper examined the translation of ‘bread’ into the Yoruba language in three Yoruba versions of the Bible: Bibeli Yoruba Atoka (YBA), Bibeli Mimo ni Ede Yoruba Oni (BMY) and Bibeli Mimo (BM). In biblical times, bread was a very important delicacy that it was synonymous with food in general and in the Bible, bread sometimes refers to a type of food (a mixture of flour, water, and yeast that is baked) or food in general. However, this is not the case in the Yoruba culture. In fact, some decades ago, bread was not known in Nigeria and had no name in the Yoruba language until the 1900s when it was codified as burẹdi in Yoruba, a term borrowed from English and transliterated. Nevertheless, in Nigeria presently, bread is not a special food and it is not appreciated or consumed like in the West. This makes it difficult to translate bread in the Bible into Yoruba. From an investigation on the translation of this term, it was discovered that bread which has 330 occurrences in the English Bible translation (King James) has few occurrences in the three Yoruba Bible versions. In the first version (YBA) published in the 1880s, where bread is synonymous with food in general, it is mostly translated as oúnjẹ (food) or the verb jẹ (to eat), revealing that something is eaten but not indicating what it is. However, when the bread is a type of food, it is rendered as akara, a special delicacy of the Yoruba people made from beans flour. In the later version (BMY) published in the 1990s, bread as food, in general, is also mainly translated as oúnjẹ or the verb jẹ, but when it is a type of food, it is translated as akara with few occurrences of burẹdi. In the latest edition (BM), bread as food is either rendered as ounje or literally translated as burẹdi. Where it is a type of food in this version, it is mainly rendered as burẹdi with few occurrences of akara, indicating the assimilation of bread into the Yoruba culture. This result, although limited, shows that the Bible was translated into Yoruba to make it accessible to Yoruba speakers in their everyday language, hence the application of both domesticating and foreignising strategies. This research also emphasizes the role of the translator as an intermediary between two cultures.Keywords: translation, Bible, Yoruba, cultural problems
Procedia PDF Downloads 2771505 Development of a Sustainable Municipal Solid Waste Management for an Urban Area: Case Study from a Developing Country
Authors: Anil Kumar Gupta, Dronadula Venkata Sai Praneeth, Brajesh Dubey, Arundhuti Devi, Suravi Kalita, Khanindra Sharma
Abstract:
Increase in urbanization and industrialization have led to improve in the standard of living. However, at the same time, the challenges due to improper solid waste management are also increasing. Municipal Solid Waste management is considered as a vital step in the development of urban infrastructure. The present study focuses on developing a solid waste management plan for an urban area in a developing country. The current scenario of solid waste management practices at various urban bodies in India is summarized. Guwahati city in the northeastern part of the country and is also one of the targeted smart cities (under the governments Smart Cities program) was chosen as case study to develop and implement the solid waste management plan. The whole city was divided into various divisions and waste samples were collected according to American Society for Testing and Materials (ASTM) - D5231-92 - 2016 for each division in the city and a composite sample prepared to represent the waste from the entire city. The solid waste characterization in terms of physical and chemical which includes mainly proximate and ultimate analysis were carried out. Existing primary and secondary collection systems were studied and possibilities of enhancing the collection systems were discussed. The composition of solid waste for the overall city was found to be as: organic matters 38%, plastic 27%, paper + cardboard 15%, Textile 9%, inert 7% and others 4%. During the conference presentation, further characterization results in terms of Thermal gravimetric analysis (TGA), pH and water holding capacity will be discussed. The waste management options optimizing activities such as recycling, recovery, reuse and reduce will be presented and discussed.Keywords: proximate, recycling, thermal gravimetric analysis (TGA), solid waste management
Procedia PDF Downloads 1901504 Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits
Authors: O.Ofoegbu, S. Roongnapa, A.N. Eboatu
Abstract:
Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively.Keywords: chitosan, dual-templated, methacrylic acid, mixed-toxicants, molecularly-imprinted-polymer
Procedia PDF Downloads 1161503 Ochratoxin-A in Traditional Meat Products from Croatian Households
Authors: Jelka Pleadin, Nina Kudumija, Ana Vulic, Manuela Zadravec, Tina Lesic, Mario Skrivanko, Irena Perkovic, Nada Vahcic
Abstract:
Products of animal origin, such as meat and meat products, can contribute to human mycotoxins’ intake coming as a result of either indirect transfer from farm animals exposed to naturally contaminated grains and feed (carry-over effects) or direct contamination with moulds or naturally contaminated spice mixtures used in meat production. Ochratoxin A (OTA) is mycotoxin considered to be of the outermost importance from the public health standpoint in connection with meat products. The aim of this study was to investigate the occurrence of OTA in different traditional meat products circulating on Croatian markets during 2018, produced by a large number of households situated in eastern and north Croatian regions using a variety of technologies. Concentrations of OTA were determined in traditional meat products (n = 70), including dry fermented sausages (Slavonian kulen, Slavonian sausage, Istrian sausage and domestic sausage; n = 28), dry-cured meat products (pancetta, pork rack and ham; n = 22) and cooked sausages (liver sausages, black pudding sausages and pate; n = 20). OTA was analyzed by use of quantitative screening immunoassay method (ELISA) and confirmed for positive samples (higher than the limit of detection) by liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Whereas the bacon samples contaminated with OTA were not found, its level in dry fermented sausages ranged from 0.22 to 2.17 µg/kg and in dry-cured meat products from 0.47 to 5.35 µg/kg, with in total 9% of positive samples. Besides possible primary contamination of these products arising due to improper manufacturing or/and storage conditions, observed OTA contamination could also be the consequence of secondary contamination that comes as a result of contaminated feed the animals were fed on. OTA levels obtained in cooked sausages ranged from 0.32 to 4.12 µg/kg (5% of positives) and could probably be linked to the contaminated raw materials (liver, kidney and spices) used in the sausages production. The results showed an occasional OTA contamination of traditional meat products, pointing that to avoid such contamination on households these products should be produced and processed under standardized and well-controlled conditions. Further investigations should be performed in order to identify mycotoxin-producing moulds on the surface of the products and to define preventative measures that can reduce the contamination of traditional meat products during their production on households and period of storage.Keywords: Croatian households, ochratoxin-A, traditional cooked sausages, traditional dry-cured meat products
Procedia PDF Downloads 1901502 Assessment of Multi-Domain Energy Systems Modelling Methods
Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell
Abstract:
Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.Keywords: CHPV, thermal storage, control, dynamic simulation
Procedia PDF Downloads 2401501 Grain Structure Evolution during Friction-Stir Welding of 6061-T6 Aluminum Alloy
Authors: Aleksandr Kalinenko, Igor Vysotskiy, Sergey Malopheyev, Sergey Mironov, Rustam Kaibyshev
Abstract:
From a thermo-mechanical standpoint, friction-stir welding (FSW) represents a unique combination of very large strains, high temperature and relatively high strain rate. The material behavior under such extreme deformation conditions is not studied well and thus, the microstructural examinations of the friction-stir welded materials represent an essential academic interest. Moreover, a clear understanding of the microstructural mechanisms operating during FSW should improve our understanding of the microstructure-properties relationship in the FSWed materials and thus enables us to optimize their service characteristics. Despite extensive research in this field, the microstructural behavior of some important structural materials remains not completely clear. In order to contribute to this important work, the present study was undertaken to examine the grain structure evolution during the FSW of 6061-T6 aluminum alloy. To provide an in-depth insight into this process, the electron backscatter diffraction (EBSD) technique was employed for this purpose. Microstructural observations were conducted by using an FEI Quanta 450 Nova field-emission-gun scanning electron microscope equipped with TSL OIMTM software. A suitable surface finish for EBSD was obtained by electro-polishing in a solution of 25% nitric acid in methanol. A 15° criterion was employed to differentiate low-angle boundaries (LABs) from high-angle boundaries (HABs). In the entire range of the studied FSW regimes, the grain structure evolved in the stir zone was found to be dominated by nearly-equiaxed grains with a relatively high fraction of low-angle boundaries and the moderate-strength B/-B {112}<110> simple-shear texture. In all cases, the grain-structure development was found to be dictated by an extensive formation of deformation-induced boundaries, their gradual transformation to the high-angle grain boundaries. Accordingly, the grain subdivision was concluded to the key microstructural mechanism. Remarkably, a gradual suppression of this mechanism has been observed at relatively high welding temperatures. This surprising result has been attributed to the reduction of dislocation density due to the annihilation phenomena.Keywords: electron backscatter diffraction, friction-stir welding, heat-treatable aluminum alloys, microstructure
Procedia PDF Downloads 2351500 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery
Authors: Abebe Taye
Abstract:
The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability
Procedia PDF Downloads 731499 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells
Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós
Abstract:
Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution
Procedia PDF Downloads 2891498 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy
Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf
Abstract:
Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.Keywords: net primary productivity, provisioning services, suitability assessment, wind energy
Procedia PDF Downloads 1531497 The Fast Diagnosis of Acanthamoeba Keratitis Using Real-Time PCR Assay
Authors: Fadime Eroglu
Abstract:
Acanthamoeba genus belongs to kingdom protozoa, and it is known as free-living amoebae. Acanthamoeba genus has been isolated from human bodies, swimming pools, bottled mineral water, contact lens solutions, dust, and soil. The members of the genus Acanthamoeba causes Acanthamoeba Keratitis which is a painful sight-threatening disease of the eyes. In recent years, the prevalence of Acanthamoeba keratitis has been high rate reported. The eight different Acanthamoeba species are known to be effective in Acanthamoeba keratitis. These species are Acanthamoeba castellanii, Acanthamoeba polyphaga, Acanthamoeba griffini, Acanthamoeba hatchetti, Acanthamoeba culbertsoni and Acanhtamoeba rhysodes. The conventional diagnosis of Acanthamoeba Keratitis has relied on cytological preparations and growth of Acanthamoeba in culture. However molecular methods such as real-time PCR has been found to be more sensitive. The real-time PCR has now emerged as an effective method for more rapid testing for the diagnosis of infectious disease in decade. Therefore, a real-time PCR assay for the detection of Acanthamoeba keratitis and Acanthamoeba species have been developed in this study. The 18S rRNA sequences from Acanthamoeba species were obtained from National Center for Biotechnology Information and sequences were aligned with MEGA 6 programme. Primers and probe were designed using Custom Primers-OligoPerfectTMDesigner (ThermoFisherScientific, Waltham, MA, USA). They were also assayed for hairpin formation and degree of primer-dimer formation with Multiple Primer Analyzer ( ThermoFisherScientific, Watham, MA, USA). The eight different ATCC Acanthamoeba species were obtained, and DNA was extracted using the Qiagen Mini DNA extraction kit (Qiagen, Hilden, Germany). The DNA of Acanthamoeba species were analyzed using newly designed primer and probe set in real-time PCR assay. The early definitive laboratory diagnosis of Acanthamoeba Keratitis and the rapid initiation of suitable therapy is necessary for clinical prognosis. The results of the study have been showed that new primer and probes could be used for detection and distinguish for Acanthamoeba species. These new developing methods are helpful for diagnosis of Acanthamoeba Keratitis.Keywords: Acathamoeba Keratitis, Acanthamoeba species, fast diagnosis, Real-Time PCR
Procedia PDF Downloads 1181496 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude
Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar
Abstract:
High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene
Procedia PDF Downloads 1301495 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan
Authors: Malek Jamaliah, Robert Powell
Abstract:
In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management
Procedia PDF Downloads 5081494 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors
Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka
Abstract:
The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant
Procedia PDF Downloads 3071493 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy
Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann
Abstract:
Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats
Procedia PDF Downloads 3671492 Hatching Rhythm, Larval Release of the Rocky Intertidal Crab Leptoduis exaratus (Brachyura: Xanthidae) in Kuwait, Arabian Gulf
Authors: Zainab Al-Wazzan, Luis Gimenez, Lewis Le Vay, Manaf Behbehani
Abstract:
The hatching rhythm and larval release patterns of the rocky shore crab Leptoduis exaratus was investigated in relation to the tidal cycle, the time of the day, and lunar cycle. Ovigerous females were collected from rocky shores at six sites along the Kuwait coastline between April and July of 2014. The females were kept separated in aquaria under a natural photoperiod cycle and the pattern of larval release was monitored in relation to local tidal and dial cycles. Larval release occurred mostly during the night time, and was highly synchronized with neap tides that followed full moon; at the end of the hatching period, significant larval release occurred also during spring tides. Time series analysis showed a highly significant autocorrelation and the periodicity at a peak of 14-15 days. The cross-correlation analysis between hatching and the daily low tide level suggests that larvae are released about a day before neap tide. Hatching during neap tides occurred early in the night at times of the expected ebb tide. During spring tide period (late in the season), larval release occurred later during night at tides of the ebb tide. The results of this study indicated a strong relationship between the tidal cycle, time of the day and the hatching rhythm of L. exaratus. In addition, the results suggest that water level in the intertidal zone is also playing a very important role in determining the time of the hatching. Hatching and larval release synchronize with the preferred larval environmental conditions to prevent exposing larvae to physiological or environmental stress during their early larval stages. It is also an important factor in determining the larval dispersal.Keywords: brachyura, hatching rhythm, larvae, Kuwait
Procedia PDF Downloads 6761491 Load Transfer of Steel Pipe Piles in Warming Permafrost
Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani
Abstract:
As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost
Procedia PDF Downloads 1101490 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 1521489 Efficacy of Plant Extracts on Insect Pests of Watermelon and Their Effects on Nutritional Contents of the Fruits
Authors: Fatai Olaitan Alao, Thimoty Abiodun Adebayo, Oladele Abiodun Olaniran
Abstract:
This experiment was conducted at Ladoke Akintola University of Technology, Ogbomoso, Teaching and Research farm during the major and minor planting season , 2017 to determine the effects of Annona squamosa (Linn.) and Moringa oleifera (Lam) extracts on insect pests of watermelon and their effects on nutritional contents of watermelon fruits. Synthetic insecticide and untreated plots were included in the treatments for comparison. Selected plants were prepared with cold water and each plant extracts was applied at three different concentrations (5,10 and 20% v/v). Data were collected on population density of insect pests, number of aborted fruits, number of defoliated flowers , the yield was calculated in t/ha, nutritional and fatty acid contents were determine using gas chromatography. The results show that the two major insects were observed - Diabrotica undicimpunctata and Dacus cucurbitea. The tested plant extracts had about 65% control of the observed insect pests when compared with the control and the two plant extracts had the same insecticidal efficacy. However, the applied plant extracts at 20% v/v had higher insecticidal effects than the other tested concentrations. Significant higher yield was observed on the plant extracts treated plants compared with untreated plants which had the least yield() but none of the plant extracts performed effectively as Lambdachyalothrin in the control of insect pests and yield. Meanwhile, the tested plant extracts significantly improved the proximate and fatty acid contents of watermelon fruits while Lambdachyalothrin contributed negatively to the nutritional contents of watermelon fruits. Therefore, A. squpmosa and M. oleifera can be used in the management of insect pests and to improve the nutritional contents of the watermelon especially in the organic farming system.Keywords: Annona squamosa, Dacus cucubitea, Diabrotical undicimpunctata, Moringa oleifera, watermelon
Procedia PDF Downloads 1241488 Recovery of Selenium from Scrubber Sludge in Copper Process
Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu
Abstract:
The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂
Procedia PDF Downloads 2031487 Site Selection in Adaptive Reuse Architecture for Social Housing in Johannesburg, South Africa
Authors: Setapo Moloi, Jun-Ichiro Giorgos Tsutsumi
Abstract:
South Africa’s need for the provision of housing within its major city centres, specifically Gauteng Province (GP), is a major concern. Initiatives for converting misused/ unused buildings to suitable housing for residents who work in the city as well as prospective citizens are currently underway, one aspect that is needed currently, is the re-possession of these buildings repurposing, into housing communities for quality low cost mixed density housing and for this process to have minimal strain on existing infrastructure like energy, emission reduction etc. Unfortunately, there are instances in Johannesburg, the country’s economic capital, with 2017 estimates claiming that 700 buildings lay unused or misused due to issues that will be discussed in this paper, these then become hubs for illegal activity and are an unacceptable form of shelter. It can be argued that the provision of inner-city social housing is lacking, but not due to the unavailability of funding or usable land and buildings, but that these assets are not being used appropriately nor to their full potential. Currently the GP government has mandated the re-purposing of all buildings that meet their criteria (structural stability, feasibility, adaptability, etc.) with the intention of inviting interested parties to propose conversions of the buildings into densified social housing. Going forward, the proposed focus is creation of social housing communities within existing buildings which may be retrofitted with sustainable technologies, green design strategies and principles, aiming for the finished buildings to achieve ‘Net-Zero/Positive’ status. A Net-Zero building, according to The Green Building Council of South Africa (GBCSA) is a building which manages to produce resources it needs to function, and reduces wastage, emissions and demand of these resources during its lifespan. The categories which GBCSA includes are carbon, water, waste and ecology, this may include material selection, construction methods, etc.Keywords: adaptive reuse, conversion, net-zero, social housing, sustainable communities
Procedia PDF Downloads 1361486 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing
Authors: K. Haggag, N. S. Elshemy
Abstract:
Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil
Procedia PDF Downloads 3721485 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes
Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili
Abstract:
The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.Keywords: calcium, liposomes, thermodynamic parameters, calorimetry
Procedia PDF Downloads 351484 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company
Authors: Dmitry K. Shaytan, Georgy D. Laptev
Abstract:
In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.Keywords: concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management
Procedia PDF Downloads 4441483 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 2381482 Maramataka ki te Tiri o Te Moana (Maramataka in Antarctica).: A Conceptual Maramataka in the Southwestern Ross Sea Region of Antarctica
Authors: Ayla Hoeta, Holly Winton
Abstract:
Maramataka is an ancestral lunar environmental knowledge system based on environmental tohu (signs, observations or indicators), that continues to impart maatauranga (knowledge) to tangata whenua, people of the land after thousands of years. Maramataka is the mauri (energy) flow between whenua (land), moana (water) and rangi (sky), experienced through tirotiro (observing), connecting and attuning to the natural environment. Tohu serve as guidance to practises of kaiawhina (protection) a key value driving Aotearoa New Zealand led research in Antarctica. Recent developments recognise the importance of including and integrating indigenous knowledge and perspectives such as maatauranga Maaori which can provide insights into the conservation of Antarctica. We use an ancient kaupapa Maaori framework of weaving, wayfinding and attunement to navigate complexities using Hautu Waka. We investigate and weave together learnings from Antarctic and western science and indigenous Maaori maatauranga and tohu of moana, whenua and rangi to provide an indigenous perspective of Antarctica taiao and Maramataka. Drawing on past and present knowledge of environmental calendars contained in maatauranga Maaori and paleoclimate knowledge bases, field observations, interviews and whakataukii (proverbs), we aim to provide a conceptual Maramataka of the southwestern Ross Sea region and area of Antarctica. A key area of interest are the tohu related to the marama which are connected to all three interweaving spheres of moana, rangi, whenua. Maatauranga Maramataka in Aotearoa has been developed over millennia and we acknowledge the mana and sacredness of this tupuna knowledge and that this conceptual Maramataka serves as the starting point of a journey to shine light on indigenous perspectives using Maaori methods and frameworks in a dominant western science paradigm.Keywords: Maramataka, Antarctica, Aotearoa, Maaori, tohu, moon, lunar calendar
Procedia PDF Downloads 701481 Linking Temporal Changes of Climate Factors with Staple Cereal Yields in Southern Burkina Faso
Authors: Pius Borona, Cheikh Mbow, Issa Ouedraogo
Abstract:
In the Sahel, climate variability has been associated with a complex web of direct and indirect impacts. This natural phenomenon has been an impediment to agro-pastoral communities who experience uncertainty while involving in farming activities which is also their key source of livelihood. In this scenario, the role of climate variability in influencing the performance, quantity and quality of staple cereals yields, vital for food and nutrition security has been a topic of importance. This response of crops and subsequent yield variability is also a subject of immense debate due to the complexity of crop development at different stages. This complexity is further compounded by influence of slowly changing non-climatic factors. With these challenges in mind, the present paper initially explores the occurrence of climate variability at an inter annual and inter decadal level in South Burkina Faso. This is evidenced by variation of the total annual rainfall and the number of rainy days among other climatic descriptors. Further, it is shown how district-scale cereal yields in the study area including maize, sorghum and millet casually associate variably to the inter-annual variation of selected climate variables. Statistical models show that the three cereals widely depict sensitivity to the length of the growing period and total dry days in the growing season. Maize yields on the other hand relate strongly to the rainfall amount variation (R2=51.8%) showing high moisture dependence during critical growth stages. Our conclusions emphasize on adoption of efficient water utilization platforms especially those that have evidently increased yields and strengthening of forecasts dissemination.Keywords: climate variability, cereal yields, seasonality, rain fed farming, Burkina Faso, rainfall
Procedia PDF Downloads 202