Search results for: cost of energy (COE)
1184 Study of the Adsorptives Properties of Zeolites X Exchanged by the Cations Cu2 + and/or Zn2+
Authors: H. Hammoudi, S. Bendenia, I. Batonneau-Gener, A. Khelifa
Abstract:
Applying growing zeolites is due to their intrinsic physicochemical properties: a porous structure, regular, generating a large free volume, a high specific surface area, acidic properties of interest to the origin of their activity, selectivity energy and dimensional, leading to a screening phenomenon, hence the name of molecular sieves is generally attributed to them. Most of the special properties of zeolites have been valued as direct applications such as ion exchange, adsorption, separation and catalysis. Due to their crystalline structure stable, their large pore volume and their high content of cation X zeolites are widely used in the process of adsorption and separation. The acidic properties of zeolites X and interesting selectivity conferred on them their porous structure is also have potential catalysts. The study presented in this manuscript is devoted to the chemical modification of an X zeolite by cation exchange. Ion exchange of zeolite NaX by Zn 2 + cations and / or Cu 2 + is gradually conducted by following the evolution of some of its characteristics: crystallinity by XRD, micropore volume by nitrogen adsorption. Once characterized, the different samples will be used for the adsorption of propane and propylene. Particular attention is paid thereafter, on the modeling of adsorption isotherms. In this vein, various equations of adsorption isotherms and localized mobile, some taking into account the adsorbate-adsorbate interactions, are used to describe the experimental isotherms. We also used the Toth equation, a mathematical model with three parameters whose adjustment requires nonlinear regression. The last part is dedicated to the study of acid properties of Cu (x) X, Zn (x) X and CuZn (x) X, with the adsorption-desorption of pyridine followed by IR. The effect of substitution at different rates of Na + by Cu2 + cations and / or Zn 2 +, on the crystallinity and on the textural properties was treated. Some results on the morphology of the crystallites and the thermal effects during a temperature rise, obtained by scanning electron microscopy and DTA-TGA thermal analyzer, respectively, are also reported. The acidity of our different samples was also studied. Thus, the nature and strength of each type of acidity are estimated. The evaluation of these various features will provide a comparison between Cu (x) X, Zn (x) X and CuZn (x) X. One study on adsorption of C3H8 and C3H6 in NaX, Cu (x) X , Zn (x) x and CuZn (x) x has been undertaken.Keywords: adsorption, acidity, ion exchange, zeolite
Procedia PDF Downloads 1971183 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 211182 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats
Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf
Abstract:
Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits
Procedia PDF Downloads 931181 Correlation Studies in Nutritional Intake, Health Status and Clinical Examination of Young Adult Girls
Authors: Sonal Tuljaram Kame
Abstract:
Growth and development is based on proper diet. A balanced diet contains all the nutrients in required quantum. Although physical growth is completed by young adulthood, the body tissues remain in a dynamic state with catabolism slightly exceeding anabolism, resulting in a net decrease in the number of cells. After the years of adolescence which cause upheavals in the life of the person, the individual struggle to emerge as an adult who know who he is and what his goals are. During this period nutrients are needed for maintaining the health and energy is required for physical functions and physical activities. The nutritional requirement in young adulthood differs from other periods of life. Iron is needed for haemoglobin synthesis and necessitates by the considerable examination of blood volume. Young adult girls need to ensure adequate intake of iron as they loose 0.5 mg/day by way of menstruation. This is complete awareness about nutritional and health on the other side there is widespread ignorance about nutrition and health among young adult girls. The young adult girls who are aware about nutrition and health seem to be very conscious about nutritional intake and health. Figure consciousness and fear of obesity leads to self imposed intake of nutrients. It may result in various health problems. The study was planned to investigate nutrient intake, find relation between nutritional intake, clinical examination score and health status of young adult girls. The present study is based on the data collected from 120 young adult girls studying in four different competitive exams coaching academies in Akola city of Maharashtra. It was found that nutritional intake of these young adult girls was below the recommended level, nutritional knowledge level and nutritional intake are associated attributes, calories, calcium and protein intake is positively correlated with clinical examination and health status. It was concluded that well planned nutritional counseling for the young adult girls can help prevent nutritional deficiency diseases and disorders which may lead to anaemic condition in young adult girls. Girls need to be educated on intake of iron and vitamin B12.Keywords: nutritional intake, health status, young adult girls, correlation studies
Procedia PDF Downloads 3701180 Proteomic Analysis of the Inhibition of Prolyl Oligopeptidase Induced by Z-Pro-Prolinal in Filarial Parasites
Authors: Mohit Wadhawan, Sushma Rathaur
Abstract:
Lymphatic filariasis, also called elephantiasis is a tropical disease afflicting over 120 million people in 81 countries worldwide. Existing anti filarial drugs are effective against the larval stages of filarial parasites which call for an urgent need of drugs which are macrofilaricidal. Identification of molecular targets crucial for survival of filarial parasites is a prerequisite for drug designing. Prolyl oligopeptidase (POP) is one such crucial enzyme involved in the maturation and degradation of neuropeptides and peptide hormones. We have identified this peptidase in the bovine filarial parasite, Setaria cervi. Effect of inhibition of POP on the proteome profile of filarial parasite has been discussed in this study. Filarial parasites were exposed to Z-pro-prolinal (ZPP), a specific POP inhibitor for 8 h and the motility and viability of the parasites was observed. It significantly reduced the motility and viability of the parasites. To study the proteome profile, the cytosolic, endoplasmic reticulum (ER) and mitochondrial extracts of the adult female parasites were subjected to 2-dimensional electrophoresis. As analyzed by the PD-Quest software, the ZPP caused the alteration in the different subcellular proteins, and the significantly altered proteins were identified using MALDI-MS/MS spectrometry. The major proteins identified were found to play important role in diverse biological functions like signaling, redox regulation, energy metabolism, stress response, and cytoskeleton formation. Moreover, we found upregulation in the calcium binding proteins such as calreticulin, calponin, and calpain-6 suggesting that POP inhibition regulates calcium release. This relates to earlier reports that POP plays non-catalytic role in inositol 1,4,5-trisphosphate (IP3) signaling inducing release of calcium from ER. Taken together, the data demonstrated that inhibition of prolyl oligopeptidase alter the overall proteome signifying its role in survival of the filarial parasites. Thus this study provides a basis for the use of POP as a chemotherapeutic target for the treatment of lymphatic filariasis.Keywords: lymphatic filariasis, setaria cervi, prolyl oligopeptidase, proteomics
Procedia PDF Downloads 2841179 Strategies for Public Space Utilization
Authors: Ben Levenger
Abstract:
Social life revolves around a central meeting place or gathering space. It is where the community integrates, earns social skills, and ultimately becomes part of the community. Following this premise, public spaces are one of the most important spaces that downtowns offer, providing locations for people to be witnessed, heard, and most importantly, seamlessly integrate into the downtown as part of the community. To facilitate this, these local spaces must be envisioned and designed to meet the changing needs of a downtown, offering a space and purpose for everyone. This paper will dive deep into analyzing, designing, and implementing public space design for small plazas or gathering spaces. These spaces often require a detailed level of study, followed by a broad stroke of design implementation, allowing for adaptability. This paper will highlight how to assess needs, define needed types of spaces, outline a program for spaces, detail elements of design to meet the needs, assess your new space, and plan for change. This study will provide participants with the necessary framework for conducting a grass-roots-level assessment of public space and programming, including short-term and long-term improvements. Participants will also receive assessment tools, sheets, and visual representation diagrams. Urbanism, for the sake of urbanism, is an exercise in aesthetic beauty. An economic improvement or benefit must be attained to solidify these efforts' purpose further and justify the infrastructure or construction costs. We will deep dive into case studies highlighting economic impacts to ground this work in quantitative impacts. These case studies will highlight the financial impact on an area, measuring the following metrics: rental rates (per sq meter), tax revenue generation (sales and property), foot traffic generation, increased property valuations, currency expenditure by tenure, clustered development improvements, cost/valuation benefits of increased density in housing. The economic impact results will be targeted by community size, measuring in three tiers: Sub 10,000 in population, 10,001 to 75,000 in population, and 75,000+ in population. Through this classification breakdown, the participants can gauge the impact in communities similar to their work or for which they are responsible. Finally, a detailed analysis of specific urbanism enhancements, such as plazas, on-street dining, pedestrian malls, etc., will be discussed. Metrics that document the economic impact of each enhancement will be presented, aiding in the prioritization of improvements for each community. All materials, documents, and information will be available to participants via Google Drive. They are welcome to download the data and use it for their purposes.Keywords: downtown, economic development, planning, strategic
Procedia PDF Downloads 811178 Thorium-Doped PbS Thin Films for Radiation Damage Studies
Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel
Abstract:
We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.Keywords: thin films, doping, radiation damage, chemical bath deposition
Procedia PDF Downloads 3931177 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites
Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki
Abstract:
This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip
Procedia PDF Downloads 3241176 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions
Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch
Abstract:
Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.Keywords: behavioural realism, electric vehicles, social influence, vehicle choice
Procedia PDF Downloads 1871175 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines
Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul
Abstract:
Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing
Procedia PDF Downloads 1151174 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles
Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng
Abstract:
Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.Keywords: antibiotics, biomechanical properties, bone cement, sustained release
Procedia PDF Downloads 2571173 Broadband Platinum Disulfide Based Saturable Absorber Used for Optical Fiber Mode Locking Lasers
Authors: Hui Long, Chun Yin Tang, Ping Kwong Cheng, Xin Yu Wang, Wayesh Qarony, Yuen Hong Tsang
Abstract:
Two dimensional (2D) materials have recently attained substantial research interest since the discovery of graphene. However, the zero-bandgap feature of the graphene limits its nonlinear optical applications, e.g., saturable absorption for these applications require strong light-matter interaction. Nevertheless, the excellent optoelectronic properties, such as broad tunable bandgap energy and high carrier mobility of Group 10 transition metal dichalcogenides 2D materials, e.g., PtS2 introduce new degree of freedoms in the optoelectronic applications. This work reports our recent research findings regarding the saturable absorption property of PtS2 layered 2D material and its possibility to be used as saturable absorber (SA) for ultrafast mode locking fiber laser. The demonstration of mode locking operation by using the fabricated PtS2 as SA will be discussed. The PtS2/PVA SA used in this experiment is made up of some few layered PtS2 nanosheets fabricated via a simple ultrasonic liquid exfoliation. The operational wavelength located at ~1 micron is demonstrated from Yb-doped mode locking fiber laser ring cavity by using the PtS2 SA. The fabricated PtS2 saturable absorber offers strong nonlinear properties, and it is capable of producing regular mode locking laser pulses with pulse to pulse duration matched with the round-trip cavity time. The results confirm successful mode locking operation achieved by the fabricated PtS2 material. This work opens some new opportunities for these PtS2 materials for the ultrafast laser generation. Acknowledgments: This work is financially supported by Shenzhen Science and Technology Innovation Commission (JCYJ20170303160136888) and the Research Grants Council of Hong Kong, China (GRF 152109/16E, PolyU code: B-Q52T).Keywords: platinum disulfide, PtS2, saturable absorption, saturable absorber, mode locking laser
Procedia PDF Downloads 1881172 Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University
Authors: Lauren B. Birney
Abstract:
Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly.Keywords: environmental restoration science, citizen science, data science, STEM
Procedia PDF Downloads 851171 Disaster Capitalism, Charter Schools, and the Reproduction of Inequality in Poor, Disabled Students: An Ethnographic Case Study
Authors: Sylvia Mac
Abstract:
This ethnographic case study examines disaster capitalism, neoliberal market-based school reforms, and disability through the lens of Disability Studies in Education. More specifically, it explores neoliberalism and special education at a small, urban charter school in a large city in California and the (re)production of social inequality. The study uses Sociology of Special Education to examine the ways in which special education is used to sort and stratify disabled students. At a time when rhetoric surrounding public schools is framed in catastrophic and dismal language in order to justify the privatization of public education, small urban charter schools must be examined to learn if they are living up to their promise or acting as another way to maintain economic and racial segregation. The study concludes that neoliberal contexts threaten successful inclusive education and normalize poor, disabled students’ continued low achievement and poor post-secondary outcomes. This ethnographic case study took place at a small urban charter school in a large city in California. Participants included three special education students, the special education teacher, the special education assistant, a regular education teacher, and the two founders and charter writers. The school claimed to have a push-in model of special education where all special education students were fully included in the general education classroom. Although presented as fully inclusive, some special education students also attended a pull-out class called Study Skills. The study found that inclusion and neoliberalism are differing ideologies that cannot co-exist. Successful inclusive environments cannot thrive while under the influences of neoliberal education policies such as efficiency and cost-cutting. Additionally, the push for students to join the global knowledge economy means that more and more low attainers are further marginalized and kept in poverty. At this school, neoliberal ideology eclipsed the promise of inclusive education for special education students. This case study has shown the need for inclusive education to be interrogated through lenses that consider macro factors, such as neoliberal ideology in public education, as well as the emerging global knowledge economy and increasing income inequality. Barriers to inclusion inside the school, such as teachers’ attitudes, teacher preparedness, and school infrastructure paint only part of the picture. Inclusive education is also threatened by neoliberal ideology that shifts the responsibility from the state to the individual. This ideology is dangerous because it reifies the stereotypes of disabled students as lazy, needs drains on already dwindling budgets. If these stereotypes persist, inclusive education will have a difficult time succeeding. In order to more fully examine the ways in which inclusive education can become truly emancipatory, we need more analysis on the relationship between neoliberalism, disability, and special education.Keywords: case study, disaster capitalism, inclusive education, neoliberalism
Procedia PDF Downloads 2201170 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor
Authors: Narasamma Nippatlapallia
Abstract:
Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination
Procedia PDF Downloads 291169 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads
Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor
Abstract:
Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂
Procedia PDF Downloads 1781168 Interactive Glare Visualization Model for an Architectural Space
Authors: Florina Dutt, Subhajit Das, Matthew Swartz
Abstract:
Lighting design and its impact on indoor comfort conditions are an integral part of good interior design. Impact of lighting in an interior space is manifold and it involves many sub components like glare, color, tone, luminance, control, energy efficiency, flexibility etc. While other components have been researched and discussed multiple times, this paper discusses the research done to understand the glare component from an artificial lighting source in an indoor space. Consequently, the paper discusses a parametric model to convey real time glare level in an interior space to the designer/ architect. Our end users are architects and likewise for them it is of utmost importance to know what impression the proposed lighting arrangement and proposed furniture layout will have on indoor comfort quality. This involves specially those furniture elements (or surfaces) which strongly reflect light around the space. Essentially, the designer needs to know the ramification of the ‘discomfortable glare’ at the early stage of design cycle, when he still can afford to make changes to his proposed design and consider different routes of solution for his client. Unfortunately, most of the lighting analysis tools that are present, offer rigorous computation and analysis on the back end eventually making it challenging for the designer to analyze and know the glare from interior light quickly. Moreover, many of them do not focus on glare aspect of the artificial light. That is why, in this paper, we explain a novel approach to approximate interior glare data. Adding to that we visualize this data in a color coded format, expressing the implications of their proposed interior design layout. We focus on making this analysis process very fluid and fast computationally, enabling complete user interaction with the capability to vary different ranges of user inputs adding more degrees of freedom for the user. We test our proposed parametric model on a case study, a Computer Lab space in our college facility.Keywords: computational geometry, glare impact in interior space, info visualization, parametric lighting analysis
Procedia PDF Downloads 3501167 Redox-Mediated Supramolecular Radical Gel
Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay
Abstract:
In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.Keywords: Ionic-gel, redox-cycle, self-assembly, useful product
Procedia PDF Downloads 851166 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin
Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa
Abstract:
Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®
Procedia PDF Downloads 1311165 Alternative Fuel Production from Sewage Sludge
Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova
Abstract:
The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge
Procedia PDF Downloads 1351164 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production
Procedia PDF Downloads 2401163 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome
Authors: Vivian Caroline Koerbel Dombrowski
Abstract:
Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon
Procedia PDF Downloads 4201162 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 171161 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent
Authors: Faidon Kyriakou, William Dempster, David Nash
Abstract:
Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.Keywords: AAA, efficiency, finite element analysis, stent deployment
Procedia PDF Downloads 1911160 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach
Procedia PDF Downloads 1881159 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 1751158 Dietary Micronutritient and Health among Youth in Algeria
Authors: Allioua Meryem
Abstract:
Similar to much of the developing world, Algeria is currently undergoing an epidemiological transition. While mal- and under-nutrition and infectious diseases used to be the main causes of poor health, today there is a higher proportion of chronic, non-communicable diseases (NCDs), including cardiovascular disease, diabetes mellitus, cancer, etc. According to estimates for Algeria from the World Health Organization (WHO), NCDs accounted for 63% of all deaths in 2010. The objective of this study was the assessment of eating habits and anthropometric characteristics in a group of youth aged 15 to 19 years in Tlemcen. This study was conducted on a total effective of 806 youth enrolled in a descriptive cross-sectional study; the classification of nutritional status has been established by international standards IOTF, youth were defined as obese if they had a BMI ≥ 95th percentile, and youth with 85th ≤ BMI ≤ 95th percentile were defined as overweight. Wc is classified by the criteria HD, Wc with moderate risk ≥ 90th percentile and Wc with high risk ≥ 95th percentile. The dietary assessment was based on a 24-hour dietary recall assisted by food records. USDA’S nutrient database for Nutrinux® program was used to analyze dietary intake. Nutrients adequacy ratio was calculated by dividing daily individual intake to dietary recommended intake DRI for each nutrient. 9% of the population was overweight, 3% was obese, 7.5% had abdominal obesity, foods eaten in moderation are chips, cookies, chocolate 1-3 times/day and increased consumption of fried foods in the week, almost half of youth consume sugary drinks more than 3 times per week, we observe a decreased intake of energy, protein (P < 0.001, P = 0.003), SFA (P = 0.018), the NAR of phosphorus, iron, magnesium, vitamin B6, vitamin E, folate, niacin, and thiamin reflecting less consumption of fruit, vegetables, milk, and milk products. Youth surveyed have eating habits at risk of developing obesity and chronic disease.Keywords: food intake, health, anthropometric characteristics, Algeria
Procedia PDF Downloads 5401157 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization
Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries
Abstract:
Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning
Procedia PDF Downloads 2671156 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential
Authors: Mfoniso Udofia Aka
Abstract:
A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy
Procedia PDF Downloads 291155 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 103