Search results for: surface soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8925

Search results for: surface soil

7755 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor

Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.

Keywords: additive manufacturing, impeller, centrifugal compressor, performance

Procedia PDF Downloads 127
7754 Effect of Chemical Concentration on the Rheology of Inks for Inkjet Printing

Authors: M. G. Tadesse, J. Yu, Y. Chen, L. Wang, V. Nierstrasz, C. Loghin

Abstract:

Viscosity and surface tension are the fundamental rheological property of an ink for inkjet printing. In this work, we optimized the viscosity and surface tension of inkjet inks by varying the concentration of glycerol with water, PEDOT:PSS with glycerol and water, finally by adding the surfactant. The surface resistance of the sample was characterized by four-probe measurement principle. The change in volume of PEDOT:PSS in water, as well as the change in weight of glycerol in water has got a great influence on the viscosity on both temperature dependence and shear dependence behavior of the ink solution. The surface tension of the solution changed from 37 to 28 mN/m due to the addition of Triton. Varying the volume of PEDOT:PSS and the volume of glycerol in water has a great influence on the viscosity of the ink solution for inkjet printing. Viscosity drops from 12.5 to 9.5 mPa s with the addition of Triton at 25 oC. The PEDOT:PSS solution was found to be temperature dependence but not shear dependence as it is a Newtonian fluid. The sample was used to connect the light emitting diode (LED), and hence the electrical conductivity, with a surface resistance of 0.158 KΩ/square, was sufficient enough to give transfer current for LED lamp. The rheology of the inkjet ink is very critical for the successful droplet formation of the inkjet printing.

Keywords: shear rate, surface tension, surfactant, viscosity

Procedia PDF Downloads 154
7753 Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite

Authors: Lakshminarayanan, Vijayaraghavan, Krishnamurthy

Abstract:

The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results.

Keywords: ceramic matrix composite, cold compaction, material characterization, particulate and surface grinding

Procedia PDF Downloads 224
7752 Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud

Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan

Abstract:

For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.

Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis

Procedia PDF Downloads 258
7751 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction

Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang

Abstract:

The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.

Keywords: surface machining, EBSD, subsurface layer, local deformation

Procedia PDF Downloads 314
7750 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model

Authors: Can Huang, Xiaoliang Wang, Qingquan Liu

Abstract:

Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.

Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH

Procedia PDF Downloads 42
7749 Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests

Authors: Rabia Chaudhry, Andrew Dawson

Abstract:

Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa.

Keywords: critical state, stress strain behavior, fabric/structure, triaxial tests

Procedia PDF Downloads 398
7748 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake

Authors: Supriya Majumder, Pabitra Banik

Abstract:

Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.

Keywords: arsenic, fractionation, paddy soil, potential availability

Procedia PDF Downloads 108
7747 Soil with Carbonate Accumulation in Tensift Al Haouz Lowland (Morocco): Characterization, Genesis and the Environmental Significance

Authors: Lahcen Daoudi, Soukaina Elidrissi, Nathalie Fagel

Abstract:

The calcareous accumulations in the surface formations of the soil, are a very widespread phenomenon in the arid and semi-arid regions. Many aspects of physical and chemical evolution of these soils were debated for more than one century. The last two decades have witnessed a remarkable interest in the study of the calcrete. In Morocco, as in most Mediterranean countries, soils with carbonate accumulation cover large areas of the territory. The isohumic subtropical soils and red Mediterranean soils include always a horizon of calcrete accumulation. In the lowland of Tensift Al Haouz located in the central part of Morocco, the arable lands are underlain by indurate pedogenic calcrete of various thicknesses; this constitutes a serious handicap for agricultural development in the region. Our aims in this study is to analyze the characteristics of the crusts developed in this area in order to identify the various facies, their geographic distribution and the factors that played a significant role in the differentiation of these calcareous accumulations. The characterizations were based on various techniques including field observations, X-ray diffraction analysis (XRD) for both raw materials and clay fractions, SEM analysis, Calcimetry and Loss On Ignition (LOI). The analysis of encrusting calcrete in a rich and varied observation field as the region of Tensift Al Haouz enabled us to specify the important types of accumulations: diffuse, nodular and massive encrusting. The shape of encrusting as well as their consistency and hardness is clearly related to the contents of CaCO3 of the profiles. Among these facies, the hardpan which results from a complex succession of processes is certainly the most morphologically advanced form of encrusting. The vertical and lateral distribution of these forms in the Tensift Al Haouz area indicates that they do not appear randomly but seem related to well defined environmental conditions. The differentiation and evolution of encrusting is under the influence of two major factors: 1) the availability of carbonate rich solution which is controlled by the topography, the nature and texture of underlying host rock and the detrital processes; 2) the climate which is responsible for the evaporation and crystallization of carbonate.

Keywords: soil calcrete, characterization, morphology, Tensift Al Haouz, Morocco

Procedia PDF Downloads 376
7746 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 53
7745 Effect of Integrity of the Earthing System on the Rise of Earth Potential

Authors: N. Ullah, A. Haddad, F. Van Der Linde

Abstract:

This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.

Keywords: bonding, earthing, EPR, integrity, system

Procedia PDF Downloads 312
7744 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil

Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.

Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test

Procedia PDF Downloads 62
7743 Determination of Surface Deformations with Global Navigation Satellite System Time Series

Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak

Abstract:

The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.

Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations

Procedia PDF Downloads 145
7742 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites

Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi

Abstract:

Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.

Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging

Procedia PDF Downloads 338
7741 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan

Authors: Sean Taylor, Sayantani Neogi, Julia Budka

Abstract:

The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.

Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology

Procedia PDF Downloads 410
7740 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 304
7739 Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy

Authors: Sanjeev Kumar, Vikas Kumar

Abstract:

Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen.

Keywords: IN718 superalloy, nanostructure, USP, LCF life

Procedia PDF Downloads 94
7738 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.

Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy

Procedia PDF Downloads 142
7737 Peak Floor Response for Buildings with Flexible Base

Authors: Luciano Roberto Fernandez-Sola, Cesar Augusto Arredondo-Velez, Miguel Angel Jaimes-Tellez

Abstract:

This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal.

Keywords: peak floor intensities, dynamic soil-structure interaction, buildings with flexible base, kinematic and inertial interaction

Procedia PDF Downloads 434
7736 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Farhan Ali

Abstract:

Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.

Keywords: pathogens, wastewater, concentration, effluent

Procedia PDF Downloads 274
7735 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol

Procedia PDF Downloads 369
7734 Water Balance in the Forest Basins Essential for the Water Supply in Central America

Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan

Abstract:

The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.

Keywords: Costa Rica, infiltration, soil, water

Procedia PDF Downloads 364
7733 Evaluation of Barium Sulfate and Its Surface Modification as Reinforcing Filler for Natural and Some Synthetic Rubbers

Authors: Mohamad Abdelfattah Ibrahim Elghrbawy

Abstract:

This work deals to evaluate barium sulfate (BS) before and after its surface modification as reinforcing filler for rubber. Barium sulfate was surface-modified using polymethacrylic acid (PMAA), the monolayer surface coverage of barium sulfate by polymethacrylic acid molecules occurred at 5.4x10-6 mol/g adsorbed amount. This amount was sufficient to reduce the sediment volume from 2.65 to 2.55 cm3/gm. Natural rubber (NR) was compounded with different concentrations of barium sulfate. The rheological characteristics of NR mixes were measured using a Monsanto Oscillating Disk Rheometer. The compounded NR was vulcanized at 142°C, and the physico-mechanical properties were tested according to the standard methods. The rheological data show that the minimum torque decreases while the maximum torque increases as the barium sulfate content increase. The physico-mechanical properties of NR vulcanizates were improved up to 50 phr/ barium sulfate loading. On the other hand, styrene–butadiene rubber (SBR) and nitrile–butadiene rubber (NBR) rubbers compounded with 50 phr/barium sulfate had good rheological and mechanical properties. Scanning electron microscope studies show surface homogeneity of rubber samples as a result of good dispersion of surface modified barium sulfate in the rubber matrix. The NR, SBR and NBR vulcanizates keep their values of mechanical properties after subjected to thermal oxidative aging at 90°C for 7 days.

Keywords: barium sulfate, natural rubber (nr), nitrile–butadiene rubber (nbr), polymethacrylic acid (pmaa), styrene–butadiene rubber (sbr), surface modification

Procedia PDF Downloads 63
7732 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand

Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz

Abstract:

The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.

Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio

Procedia PDF Downloads 173
7731 Evalutaion of the Surface Water Quality Using the Water Quality Index and Discriminant Analysis Method

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

Water resources present to the public order of the world a very important problem for the protection and management of water quality given the complexity of water quality data sets. In this study, the water quality index (WQI) and irrigation water quality index (IWQI) were calculated in order to evaluate the surface water quality for drinking and irrigation purposes based on nine hydrochemical parameters. In order to separate the variables that are the most responsible for the spatial differentiation, the discriminant analysis (DA) was applied. The results show that the surface water quality for drinking is poor quality and very poor quality based on WQI values, however, the values of IWQI reflect that this water is acceptable for irrigation with a restriction for sensitive plants. Consequently, the discriminant analysis DA method has shown that the following parameters pH, potassium, chloride, sulfate, and bicarbonate are significant discrimination between the different stations with the spatial variation of the surface water quality, therefore, the results obtained in this study provide very useful information to decision-makers

Keywords: surface water quality, drinking and irrigation purposes, water quality index, discriminant analysis

Procedia PDF Downloads 63
7730 Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets

Authors: Seyedebrahim Afkhami, Meisam Abdi, Reza Baserinia

Abstract:

Additive manufacturing is revolutionising production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modelling 3D printer. The dissolution behaviour of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behaviour for pharmaceutical and biopharmaceutical applications.

Keywords: additive manufacturing, polymer dissolution, fused deposition modelling, geometry optimization

Procedia PDF Downloads 75
7729 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: indium tin oxide, particles, surface-modification, volume resistivity

Procedia PDF Downloads 237
7728 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 558
7727 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms

Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora

Abstract:

Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.

Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms

Procedia PDF Downloads 333
7726 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite

Authors: Mohsen Farahat, Tsuyoshi Hirajima

Abstract:

Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.

Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy

Procedia PDF Downloads 224