Search results for: research data sharing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 41045

Search results for: research data sharing

39875 The Use of Artificial Intelligence to Curb Corruption in Brazil

Authors: Camila Penido Gomes

Abstract:

Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.

Keywords: artificial intelligence, civil society organization, corruption, open data, transparency

Procedia PDF Downloads 205
39874 The Value and Role of Higher Education in the Police Profession

Authors: Habib Ahmadi, Mohamad Ali Ameri

Abstract:

In this research, the perception and understanding of police officers about the value of higher education have been investigated. A qualitative research approach and phenomenological method were used, and in data analysis, the Claizi method was used. In this research, 17 people with different degrees and occupations were selected by purposive sampling method until saturation and were investigated using a semi-structured interview tool. After the data was collected, recorded, and coded in the Atlas T software, it was formulated in the form of main categories and concepts. The general views of police officers participating in this research show the importance of university education in police jobs(76%). The analysis of participants' experiences led to the identification of seven main categories of the value and role of higher education, including; 1- Improvement of behavior and social skills, 2- Opportunities to improve and improve job performance, 3- Professionalization of police work, 4- Financial motivation, 5- People's satisfaction with police services, 6- Improvement of writing and technical skills Statement, 7- Raising the level of expectation and expectations was misplaced (negative perception). The findings of this study support the positive attitude and professionalism of the educated police. Therefore, considering the change of paradigm in society as well as the change of technologies, more complex organizational designs, and the perception of police officers, it is concluded that the police field needs officers with higher education to enable them to understand the new global environment.

Keywords: lived experience, higher education, police professionalization, perceptions of police officers

Procedia PDF Downloads 83
39873 The Impact of Agricultural Product Export on Income and Employment in Thai Economy

Authors: Anucha Wittayakorn-Puripunpinyoo

Abstract:

The research objectives were 1) to study the situation and its trend of agricultural product export of Thailand 2) to study the impact of agricultural product export on income of Thai economy 3) the impact of agricultural product export on employment of Thai economy and 4) to find out the recommendations of agricultural product export policy of Thailand. In this research, secondary data were collected as yearly time series data from 1990 to 2016 accounted for 27 years. Data were collected from the Bank of Thailand database. Primary data were collected from the steakholders of agricultural product export policy of Thailand. Data analysis was applied descriptive statistics such as arithmetic mean, standard deviation. The forecasting of agricultural product was applied Mote Carlo Simulation technique as well as time trend analysis. In addition, the impact of agricultural product export on income and employment by applying econometric model while the estimated parameters were utilized the ordinary least square technique. The research results revealed that 1) agricultural product export value of Thailand from 1990 to 2016 was 338,959.5 Million Thai baht with its growth rate of 4.984 percent yearly, in addition, the forecasting of agricultural product export value of Thailand has increased but its growth rate has been declined 2) the impact of agricultural product export has positive impact on income in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.0051 percent 3) the impact of agricultural product export has positive impact on employment in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.079 percent and 4) in the future, agricultural product export policy would focused on finished or semi-finished agricultural product instead of raw material by applying technology and innovation in to make value added of agricultural product export. The public agricultural product export policy would support exporters in private sector in order to encourage them as agricultural exporters in Thailand.

Keywords: agricultural product export, income, employment, Thai economy

Procedia PDF Downloads 309
39872 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
39871 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 134
39870 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 55
39869 Impact Assessment of Plum Research Investments in South Africa

Authors: Precious M. Tshabalala, Thula S. Dlamini, Frikkie Liebenberg, Johann Kirsten

Abstract:

Numerous studies have been conducted, and the evidence has been unambiguous showing that investing in agricultural research and development increases productivity. Continued investments in agricultural research have led to the development of over 26 successful plum cultivars since 1980 at the Agricultural Research Council’s (ARC) Infruitec/Nietvoorbij in South Africa, and more continue to be developed to meet the specific needs of both producers and consumers. Yet very little is known about the returns on any of these research initiatives. The objective of the study was determine the economic impact of plum research investments at the ARC-the main plum breeding research organization in the country. The rate of return to plum research is estimated by estimating parameters in plum production and expressing research investment as an explanatory variable. The marginal rate of return is then determined to be 14.23 per cent. The rate of return to investment being this high is indicative of an under investment in plum research.

Keywords: Agricultural research investments, productivity and rate of return, plum

Procedia PDF Downloads 486
39868 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
39867 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 198
39866 Web Search Engine Based Naming Procedure for Independent Topic

Authors: Takahiro Nishigaki, Takashi Onoda

Abstract:

In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.

Keywords: independent topic analysis, topic extraction, topic naming, web search engine

Procedia PDF Downloads 119
39865 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone

Authors: Marju Ben Sayed, Shigeko Haruyama

Abstract:

Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.

Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood

Procedia PDF Downloads 296
39864 Effective Counseling Techniques Working with At-Risk Youth in Residential and Outpatient Settings

Authors: David A. Scott, Michelle G. Scott

Abstract:

The problem of juvenile crime, school suspensions and oppositional behaviors indicates a need for a wide range of intervention programs for at-risk youth. Juvenile court systems and mental health agencies are examining alternative ways to deal with at-risk youth that will allow the adolescent to live within their home community. The previous trend that treatment away from home is more effective than treatment near one's community has shifted. Research now suggests that treatment be close to home for several reasons, such as increased treatment success, parental involvement, and reduced costs. Treatment options consist of a wide range of interventions, including outpatient, inpatient, and community-based services (therapeutic group homes, foster care and in-home preservation services). The juvenile justice system, families and other mental health agencies continue to seek the most effective treatment for at-risk youth in their communities. This research examines two possible treatment modalities, a multi-systemic outpatient program and a residential program. Research examining effective, evidence- based counseling will be discussed during this presentation. The presenter recently completed a three-year research grant examining effective treatment modalities for at-risk youth participating in a multi-systemic program. The presenter has also been involved in several research activities gathering data on effective techniques used in residential programs. The data and discussion will be broken down into two parts, each discussing one of the treatment modalities mentioned above. Data on the residential programs was collected on both a sample of 740 at- risk youth over a five-year period and also a sample of 63 participants during a one-year period residing in a residential programs. The effectiveness of these residential services was measured in three ways: services are evaluated by primary referral sources; follow-up data is obtained at various intervals after program participation to measure recidivism (what percentage got back into trouble with the Department of Juvenile Justice); and a more sensitive, "Offense Seriousness Score", has been computed and analyzed prior to, during and after treatment in the residential program. Data on the multi-systemic program was gathered over the past three years on 190 participants. Research will discuss pre and post test results, recidivism rates, academic performance, parental involvement, and effective counseling treatment modalities.

Keywords: at-risk youth, group homes, therapeutic group homes, recidivism rates

Procedia PDF Downloads 81
39863 A Descriptive Study of the Characteristics of Introductory Accounting Courses Offered by Community Colleges

Authors: Jonathan Nash, Allen Hartt, Catherine Plante

Abstract:

In many nations, community colleges, or similar institutions, play a crucial role in higher education. For example, in the United States more than half of all undergraduate students enroll in a community college at some point during their academic career. Similar statistics have been reported for Australia and Canada. Recognizing the important role these institutions play in educating future accountants, the American Accounting Association has called for research that contributes to a better understanding of these members of the academic community. Although previous literature has shown that community colleges and 4-year institutions differ on many levels, the extant literature has provided data on the characteristics of introductory accounting courses for four-year institutions but not for community colleges. We fill a void in the literature by providing data on the characteristics of introductory accounting courses offered by community colleges in the United States. Data are collected on several dimensions including: course size and staffing, pedagogical orientation, standardization of course elements, textbook selection, and use of technology-based course management tools. Many of these dimensions have been used in previous research examining four-year institutions thereby facilitating comparisons. The resulting data should be of interest to instructors, regulators and administrators, researchers, and the accounting profession. The data provide information on the introductory accounting courses completed by the average community college student which can help instructors identify areas where transfer students’ experiences might differ from their contemporaries at four-year colleges. Regulators and administrators may be interested in the differences between accounting courses offered by two- and four-year institutions when implementing standardized transfer programs. Researchers might use the data to motivate future research into whether differences between two- and four-year institutions affect outcomes like the probability of students choosing to major in accounting and their performance within the major. Accounting professionals may use our findings as a springboard for facilitating discussions related to the accounting labor supply.

Keywords: Accounting curricula, Community college, Descriptive study, Introductory accounting

Procedia PDF Downloads 101
39862 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 164
39861 The Analysis of Secondary Case Studies as a Starting Point for Grounded Theory Studies: An Example from the Enterprise Software Industry

Authors: Abilio Avila, Orestis Terzidis

Abstract:

A fundamental principle of Grounded Theory (GT) is to prevent the formation of preconceived theories. This implies the need to start a research study with an open mind and to avoid being absorbed by the existing literature. However, to start a new study without an understanding of the research domain and its context can be extremely challenging. This paper presents a research approach that simultaneously supports a researcher to identify and to focus on critical areas of a research project and prevent the formation of prejudiced concepts by the current body of literature. This approach comprises of four stages: Selection of secondary case studies, analysis of secondary case studies, development of an initial conceptual framework, development of an initial interview guide. The analysis of secondary case studies as a starting point for a research project allows a researcher to create a first understanding of a research area based on real-world cases without being influenced by the existing body of theory. It enables a researcher to develop through a structured course of actions a firm guide that establishes a solid starting point for further investigations. Thus, the described approach may have significant implications for GT researchers who aim to start a study within a given research area.

Keywords: grounded theory, interview guide, qualitative research, secondary case studies, secondary data analysis

Procedia PDF Downloads 266
39860 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 43
39859 Costa and Mccrae's Neo-Pi Factor and Early Adolescents School Social Adjustment in Cross River State Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study examined the influence of Costa and McCrae’s Neo-PI Factor and early adolescent’s school social adjustment in Cross River State, Nigeria. The research adopted the causal-comparative design also known as the ex-post facto with about one thousand and eighteen (1,018) students who were randomly selected from one stream of JSS 1 classes in 19 schools out of seventy-three (73) in the study area. Data were collected using two instruments one is the NEO-PI scale, and students school social adjustment questionnaire. Three research questions and three research hypotheses were postulated and tested at 0.05 level of significance. The analysis of data was carried out using both the independent t-test statistics and the one-way analysis of variance (ANOVA). The analyzed result indicated that the five dimensions had a significant influence on students school social adjustment. A post hoc was equally carried out to show the relative significant difference among the study variables. In view of the above, it was recommended that teachers, parents and educational psychologists should be involved to enhance students the confidence to overcome their social adjustment problem.

Keywords: Costa and McCrae’s NEO-PI Factor, early adolescents, school, social adjustment

Procedia PDF Downloads 147
39858 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 57
39857 Discrimination in Insurance Pricing: A Textual-Analysis Perspective

Authors: Ruijuan Bi

Abstract:

Discrimination in insurance pricing is a topic of increasing concern, particularly in the context of the rapid development of big data and artificial intelligence. There is a need to explore the various forms of discrimination, such as direct and indirect discrimination, proxy discrimination, algorithmic discrimination, and unfair discrimination, and understand their implications in insurance pricing models. This paper aims to analyze and interpret the definitions of discrimination in insurance pricing and explore measures to reduce discrimination. It utilizes a textual analysis methodology, which involves gathering qualitative data from relevant literature on definitions of discrimination. The research methodology focuses on exploring the various forms of discrimination and their implications in insurance pricing models. Through textual analysis, this paper identifies the specific characteristics and implications of each form of discrimination in the general insurance industry. This research contributes to the theoretical understanding of discrimination in insurance pricing. By analyzing and interpreting relevant literature, this paper provides insights into the definitions of discrimination and the laws and regulations surrounding it. This theoretical foundation can inform future empirical research on discrimination in insurance pricing using relevant theories of probability theory.

Keywords: algorithmic discrimination, direct and indirect discrimination, proxy discrimination, unfair discrimination, insurance pricing

Procedia PDF Downloads 73
39856 Migrant Women English Instructors' Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada

Authors: Justine Jun

Abstract:

This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Although many scholars have conducted research studies on internationally educated teachers and their professional and employment challenges, few studies have recorded migrant women English language instructors’ professional learning and support experiences in post-secondary English language programs in Canada. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences?; (2) How transformative have their learning experiences been at work?; (3) How have their colleagues and administrators influenced their transformative learning?; (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see?; (5) What have their learning experiences transformed?; (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This research has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.

Keywords: English teacher education, professional learning, transformative learning theory, workplace learning

Procedia PDF Downloads 129
39855 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 468
39854 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project

Authors: Sara Rankohi, Lloyd Waugh

Abstract:

Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.

Keywords: image-based technologies, project management, cost, productivity improvement

Procedia PDF Downloads 360
39853 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 131
39852 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 82
39851 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 130
39850 Increasing Self-Efficacy of Secondary School Students in Physics Using Mentoring Enhanced Strategy

Authors: Gabriel Odeh Ankeli

Abstract:

The study determined how mentoring enhanced strategy can increase self-efficacy of secondary school students in physics in education zone C of Benue State, Nigeria. The study was guided by two research questions while two hypotheses were formulated and tested at 0.05 level of significance. The design of the study was the quasi-experimental, non-randomized, pre-test and post-test control groups. The population of the study consisted of 4,064 SS two physics students in the 94 schools in Education Zone C. The sample comprised 406 SS two physics students drawn from 10 schools using multi-stage sampling technique. The research instrument adapted and used for data collection was Students Self-Efficacy Scale (SSES). The research instrument was subjected to a reliability analysis using Cronbachs Alpha which yielded a reliability co-efficient of 0.84. Data collected were analyzed using discriptive statistics of mean and standard deviation to answer the research questions while inferential statistics of Analysis of Covariance (ANCOVA) was used to test the hypotheses. The findings revealed that students who were exposed to mentoring exhibited lower self-efficacy levels (F 1,405 = 2.751, P = 0.09˃0.05) than those students who were not exposed to mentoring. There was significant difference between male and female students’ self-efficacy level (F 1,211 = 5.496, P = 0.02˂0.05). Based on these findings, it was recommended among others that longer duration of mentoring period should be encouraged when using the mentoring strategy for better enhancement of Self-efficacy of students.

Keywords: physics, self-efficacy, mentoring enhanced strategy, students

Procedia PDF Downloads 30
39849 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia

Authors: Atikah Nurhayati, Asep A. Handaka

Abstract:

Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.

Keywords: fishery, food security, logistic, supply chain

Procedia PDF Downloads 241
39848 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 235
39847 The Effects of Multiple Levels of Intelligence in an Algebra 1 Classroom

Authors: Abigail Gragg

Abstract:

The goal of this research study was to adjudicate if implementing Howard Gardner’s multiple levels of intelligence would enhance student achievement levels in an Algebra 1 College Preparatory class. This was conducted within every class by incorporating one level of the eight levels of intelligence into small group work in stations. Every class was conducted utilizing small-group instruction. Achievement levels were measured through various forms of collected data that expressed student understandings in class through formative assessments versus student understandings on summative assessments. The data samples included: assessments (i.e. summative and formative assessments), observable data, video recordings, a daily log book, student surveys, and checklists kept during the observation periods. Formative assessments were analyzed during each class period to measure in-class understanding. Summative assessments were dissected per question per accuracy to review the effects of each intelligence implemented. The data was collated into a coding workbook for further analysis to conclude the resulting themes of the research. These themes include 1) there was no correlation to multiple levels of intelligence enhancing student achievement, 2) bodily-kinesthetic intelligence showed to be the intelligence that had the most improvement on test questions and 3) out of all of the bits of intelligence, interpersonal intelligence enhanced student understanding in class.

Keywords: stations, small group instruction, multiple levels of intelligence, Mathematics, Algebra 1, student achievement, secondary school, instructional Pedagogies

Procedia PDF Downloads 111
39846 The Connection between Social Support, Caregiver Burden, and Life Satisfaction of the Parents Whose Children Have Congenital Heart Disease

Authors: A. Uludağ, F. G. Tufekci, N. Ceviz

Abstract:

Aim: The research has been carried out in order to evaluate caregiver burden, life satisfaction and received social support level of the parents whose children have congenital heart disease; to examine the relationship between the social supports received by them and caregiver burden and life satisfaction. Material and Method: The research which is descriptive and which is searching a relationship has been carried out between the dates June 7, 2012- June 30, 2014, in Erzurum Ataturk University Research and Application Hospital, Department of Pediatrics and Children Cardiology Polyclinic. In the research, it was collaborated with the parents (N = 157) who accepted to participate in, of children who were between the ages of 3 months- 12 years. While gathering the data, a questionnaire, Zarit Caregiver Burden, Life Satisfaction and Social Support Scales have been used. The statistics of the data acquired has been produced by using percentage distribution, mean, and variance and correlation analysis. Ethical principles are followed in the research. Results: In the research, caregiver burden, life satisfaction and social support level received from family (p < 0.05), have been determined higher in the parents whose children have serious congenital heart disease than that of parents whose children have slight disease and social support received from friends has been found lower. It has been determined that there is a strong relation (p < 0.001) through negative direction between both social support levels and caregiver burden of parents; and that there is a strong relation (p < 0.001) through positive direction between both support levels and life satisfaction. Conclusion: That Social Support is in a strong relation with Caregiver Burden through a negative direction and a strong relation with Life Satisfaction through positive direction in parents of all the children who have congenital heart disease requires social support systems to be reinforced. Parents can be led or guided so as to prompt social support systems more.

Keywords: congenital heart disease, child, parents, caregiver burden, life satisfaction, social support

Procedia PDF Downloads 299