Search results for: nuclear accident
79 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR
Authors: E. M. Condori-Peñaloza, S. S. Costa
Abstract:
Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.Keywords: flavonoids, HPLC, NMR, phenolic compounds
Procedia PDF Downloads 31878 Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA
Authors: Evgeny A. Ermakov, Lyudmila P. Smirnova, Valentina N. Buneva
Abstract:
Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia.Keywords: anti-DNA antibodies, abzymes, DNA hydrolysis, schizophrenia
Procedia PDF Downloads 32877 New Insulation Material for Solar Thermal Collectors
Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka
Abstract:
1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.Keywords: clay, insulation material, polystyrene, solar collector, straw
Procedia PDF Downloads 46176 Predicting Long-Term Performance of Concrete under Sulfate Attack
Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki
Abstract:
Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC
Procedia PDF Downloads 16375 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector
Authors: Sempiga Olivier, Dominika Latusek-Jurczak
Abstract:
Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices
Procedia PDF Downloads 974 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome
Authors: Vivian Caroline Koerbel Dombrowski
Abstract:
Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon
Procedia PDF Downloads 42073 The Mitigation of Quercetin on Lead-Induced Neuroinflammation in a Rat Model: Changes in Neuroinflammatory Markers and Memory
Authors: Iliyasu Musa Omoyine, Musa Sunday Abraham, Oladele Sunday Blessing, Iliya Ibrahim Abdullahi, Ibegbu Augustine Oseloka, Nuhu Nana-Hawau, Animoku Abdulrazaq Amoto, Yusuf Abdullateef Onoruoiza, Sambo Sohnap James, Akpulu Steven Peter, Ajayi Abayomi
Abstract:
The neuroprotective role of inflammation from detrimental intrinsic and extrinsic factors has been reported. However, the overactivation of astrocytes and microglia due to lead toxicity produce excessive pro-inflammatory cytokines, mediating neurodegenerative diseases. The present study investigated the mitigatory effects of quercetin on neuroinflammation, correlating with memory function in lead-exposed rats. In this study, Wistar rats were administered orally with Quercetin (Q: 60 mg/kg) and Succimer as a standard drug (S: 10 mg/kg) for 21 days after lead exposure (Pb: 125 mg/kg) of 21 days or in combination with Pb, once daily for 42 days. Working and reference memory was assessed using an Eight-arm radial water maze (8-ARWM). The changes in brain lead level, the neuronal nitric oxide synthase (nNOS) activity, and the level of neuroinflammatory markers such as tumour necrosis factor-alpha (TNF-α) and Interleukin 1 Beta (IL-1β) were determined. Immunohistochemically, astrocyte expression was evaluated. The results showed that the brain level of lead was increased significantly in lead-exposed rats. The expression of astrocytes increased in the CA3 and CA1 regions of the hippocampus, and the levels of brain TNF-α and IL-1β increased in lead-exposed rats. Lead impaired reference and working memory by increasing reference memory errors and working memory incorrect errors in lead-exposed rats. However, quercetin treatment effectively improved memory and inhibited neuroinflammation by reducing astrocytes’ expression and the levels of TNF-α and IL-1β. The expression of astrocytes and the levels of TNF-α and IL-1β correlated with memory function. The possible explanation for quercetin’s anti-neuroinflammatory effect is that it modulates the activity of cellular proteins involved in the inflammatory response; inhibits the transcription factor of nuclear factor-kappa B (NF-κB), which regulates the expression of proinflammatory molecules; inhibits kinases required for the synthesis of Glial fibrillary acidic protein (GFAP) and modifies the phosphorylation of some proteins, which affect the structure and function of intermediate filament proteins; and, lastly, induces Cyclic-AMP Response Element Binding (CREB) activation and neurogenesis as a compensatory mechanism for memory deficits and neuronal cell death. In conclusion, the levels of neuroinflammatory markers negatively correlated with memory function. Thus, quercetin may be a promising therapy in neuroinflammation and memory dysfunction in populations prone to lead exposure.Keywords: lead, quercetin, neuroinflammation, memory
Procedia PDF Downloads 5472 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency
Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko
Abstract:
Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching
Procedia PDF Downloads 13071 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 25470 Experience of Two Major Research Centers in the Diagnosis of Cardiac Amyloidosis from Transthyretin
Authors: Ioannis Panagiotopoulos, Aristidis Anastasakis, Konstantinos Toutouzas, Ioannis Iakovou, Charalampos Vlachopoulos, Vasilis Voudris, Georgios Tziomalos, Konstantinos Tsioufis, Efstathios Kastritis, Alexandros Briassoulis, Kimon Stamatelopoulos, Alexios Antonopoulos, Paraskevi Exadaktylou, Evanthia Giannoula, Anastasia Katinioti, Maria Kalantzi, Evangelos Leontiadis, Eftychia Smparouni, Ioannis Malakos, Nikolaos Aravanis, Argyrios Doumas, Maria Koutelou
Abstract:
Introduction: Cardiac amyloidosis from Transthyretin (ATTR-CA) is an infiltrative disease characterized by the deposition of pathological transthyretin complexes in the myocardium. This study describes the characteristics of patients diagnosed with ATTR-CA from 2019 until present at the Nuclear Medicine Department of Onassis Cardiac Surgery Center and AHEPA Hospital. These centers have extensive experience in amyloidosis and modern technological equipment for its diagnosis. Materials and Methods: Records of consecutive patients (N=73) diagnosed with any type of amyloidosis were collected, analyzed, and prospectively followed. The diagnosis of amyloidosis was made using specific myocardial scintigraphy with Tc-99m DPD. Demographic characteristics, including age, gender, marital status, height, and weight, were collected in a database. Clinical characteristics, such as amyloidosis type (ATTR and AL), serum biomarkers (BNP, troponin), electrocardiographic findings, ultrasound findings, NYHA class, aortic valve replacement, device implants, and medication history, were also collected. Some of the most significant results are presented. Results: A total of 73 cases (86% male) were diagnosed with amyloidosis over four years. The mean age at diagnosis was 82 years, and the main symptom was dyspnea. Most patients suffered from ATTR-CA (65 vs. 8 with AL). Out of all the ATTR-CA patients, 61 were diagnosed with wild-type and 2 with two rare mutations. Twenty-eight patients had systemic amyloidosis with extracardiac involvement, and 32 patients had a history of bilateral carpal tunnel syndrome. Four patients had already developed polyneuropathy, and the diagnosis was confirmed by DPD scintigraphy, which is known for its high sensitivity. Among patients with isolated cardiac involvement, only 6 had left ventricular ejection fraction below 40%. The majority of ATTR patients underwent tafamidis treatment immediately after diagnosis. Conclusion: In conclusion, the experiences shared by the two centers and the continuous exchange of information provide valuable insights into the diagnosis and management of cardiac amyloidosis. Clinical suspicion of amyloidosis and early diagnostic approach are crucial, given the availability of non-invasive techniques. Cardiac scintigraphy with DPD can confirm the presence of the disease without the need for a biopsy. The ultimate goal still remains continuous education and awareness of clinical cardiologists so that this systemic and treatable disease can be diagnosed and certified promptly and treatment can begin as soon as possible.Keywords: amyloidosis, diagnosis, myocardial scintigraphy, Tc-99m DPD, transthyretin
Procedia PDF Downloads 9069 The Possible Interaction between Bisphenol A, Caffeine and Epigallocatechin-3-Gallate on Neurotoxicity Induced by Manganese in Rats
Authors: Azza A. Ali, Hebatalla I. Ahmed, Asmaa Abdelaty
Abstract:
Background: Manganese (Mn) is a naturally occurring element. Exposure to high levels of Mn causes neurotoxic effects and represents an environmental risk factor. Mn neurotoxicity is poorly understood but changing of AChE activity, monoamines and oxidative stress has been established. Bisphenol A (BPA) is a synthetic compound widely used in the production of polycarbonate plastics. There is considerable debate about whether its exposure represents an environmental risk. Caffeine is one of the major contributors to the dietary antioxidants which prevent oxidative damage and may reduce the risk of chronic neurodegenerative diseases. Epigallocatechin-3-gallate is another major component of green tea and has known interactions with caffeine. It also has health-promoting effects in CNS. Objective: To evaluate the potential protective effects of Caffeine and/or EGCG against Mn-induced neurotoxicity either alone or in the presence of BPA in rats. Methods: Seven groups of rats were used and received daily for 5 weeks MnCl2.4H2O (10 mg/kg, IP) except the control group which received saline, corn oil and distilled H2O. Mn was injected either alone or in combination with each of the following: BPA (50 mg/kg, PO), caffeine (10 mg/kg, PO), EGCG (5 mg/kg, IP), caffeine + EGCG and BPA +caffeine +EGCG. All rats were examined in five behavioral tests (grid, bar, swimming, open field and Y- maze tests). Biochemical changes in monoamines, caspase-3, PGE2, GSK-3B, glutamate, acetyl cholinesterase and oxidative parameters, as well as histopathological changes in the brain, were also evaluated for all groups. Results: Mn significantly increased MDA and nitrite content as well as caspase-3, GSK-3B, PGE2 and glutamate levels while significantly decreased TAC and SOD as well as cholinesterase in the striatum. It also decreased DA, NE and 5-HT levels in the striatum and frontal cortex. BPA together with Mn enhanced oxidative stress generation induced by Mn while increased monoamine content that was decreased by Mn in rat striatum. BPA abolished neuronal degeneration induced by Mn in the hippocampus but not in the substantia nigra, striatum and cerebral cortex. Behavioral examinations showed that caffeine and EGCG co-administration had more pronounced protective effect against Mn-induced neurotoxicity than each one alone. EGCG alone or in combination with caffeine prevented neuronal degeneration in the substantia nigra, striatum, hippocampus and cerebral cortex induced by Mn while caffeine alone prevented neuronal degeneration in the substantia nigra and striatum but still showed some nuclear pyknosis in cerebral cortex and hippocampus. The marked protection of caffeine and EGCG co-administration also confirmed by the significant increase in TAC, SOD, ACHE, DA, NE and 5-HT as well as the decrease in MDA, nitrite, caspase-3, PGE2, GSK-3B, the glutamic acid in the striatum. Conclusion: Neuronal degeneration induced by Mn showed some inhibition with BPA exposure despite the enhancement in oxidative stress generation. Co-administration of EGCG and caffeine can protect against neuronal degeneration induced by Mn and improve behavioral deficits associated with its neurotoxicity. The protective effect of EGCG was more pronounced than that of caffeine even with BPA co-exposure.Keywords: manganese, bisphenol a, caffeine, epigallocatechin-3-gallate, neurotoxicity, behavioral tests, rats
Procedia PDF Downloads 22868 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity
Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel
Abstract:
A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.Keywords: myelofibrosis, arthritis, arthralgia, malignancy
Procedia PDF Downloads 9867 Developing a High Performance Cement Based Material: The Influence of Silica Fume and Organosilane
Authors: Andrea Cretu, Calin Cadar, Maria Miclaus, Lucian Barbu-Tudoran, Siegfried Stapf, Ioan Ardelean
Abstract:
Additives and mineral admixtures have become an integral part of cement-based materials. It is common practice to add silica fume to cement based mixes in order to produce high-performance concrete. There is still a lack of scientific understanding regarding the effects that silica fume has on the microstructure of hydrated cement paste. The aim of the current study is to develop high-performance materials with low permeability and high resistance to flexural stress using silica fume and an organosilane. Organosilane bonds with cement grains and silica fume, influencing both the workability and the final properties of the mix, especially the pore size distributions and pore connectivity. Silica fume is a known pozzolanic agent which reacts with the calcium hydroxide in hydrated cement paste, producing more C-S-H and improving the mechanical properties of the mix. It is believed that particles of silica fume act as capillary pore fillers and nucleation centers for C-S-H and other hydration products. In order to be able to design cement-based materials with added silica fume and organosilane, it is necessary first to understand the formation of the porous network during hydration and to observe the distribution of pores and their connectivity. Nuclear magnetic resonance (NMR) methods in low-fields are non-destructive and allow the study of cement-based materials from the standpoint of their porous structure. Other methods, such as XRD and SEM-EDS, help create a comprehensive picture of the samples, along with the classic mechanical tests (compressive and flexural strength measurements). The transverse relaxation time (T₂) was measured during the hydration of 16 samples prepared with two water/cement ratios (0.3 and 0.4) and different concentrations or organosilane (APTES, up to 2% by mass of cement) and silica fume (up to 6%). After their hydration, the pore size distribution was assessed using the same NMR approach on the samples filled with cyclohexane. The SEM-EDS and XRD measurements were applied on pieces and powders prepared from the samples that were used in mechanical testing, which were kept under water for 28 days. Adding silica fume does not influence the hydration dynamics of cement paste, while the addition of organosilane extends the dormancy stage up to 10 hours. The size distribution of the capillary pores is not influenced by the addition of silica fume or organosilane, while the connectivity of capillary pores is decreased only when there is organosilane in the mix. No filling effect is observed even at the highest concentration of silica fume. There is an apparent increase in flexural strength of samples prepared only with silica fume and a decrease for those prepared with organosilane, with a few exceptions. XRD reveals that the pozzolanic reactivity of silica fume can only be observed when there is no organosilane present and the SEM-EDS method reveals the pore distribution, as well as hydration products and the presence or absence of calcium hydroxide. The current work was funded by the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, through project PN-III-P2-2.1-PED-2016-0719.Keywords: cement hydration, concrete admixtures, NMR, organosilane, porosity, silica fume
Procedia PDF Downloads 16166 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis
Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert
Abstract:
The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation
Procedia PDF Downloads 14265 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol
Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang
Abstract:
Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function
Procedia PDF Downloads 19464 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow
Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather
Abstract:
The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.Keywords: agglomeration, channel flow, DEM, LES, turbulence
Procedia PDF Downloads 31763 Common Used Non-Medical Practice and Perceived Benefits in Couples with Fertility Problems in Turkey
Authors: S. Fata, M. A. Tokat, N. Bagardi, B. Yilmaz
Abstract:
Nowadays, various traditional practices are used throughout the world with aim to improve fertility. Various traditional remedies, acupuncture, religious practices such as sacrifice are frequently used. Studies often evaluate the traditional practices used by the women. But the use of this non-medical practice by couples and specific application reasons of this methods has been less investigated. The aim of this study was to evaluate the common used non-medical practices and determine perceived benefits by couples with fertility problems in Turkey. This is a descriptive study. Research data were collected between May-July 2016, in Izmir Ege Birth Education and Research Hospital Assisted Reproduction Clinic, from 151 couples with fertility problem. Personal Information Form and Non-Medical Practices Used for Fertility Evaluation Form was used. Number 'GOA 2649' permission letter from Dokuz Eylul University Non-Invasive Research Ethics Board, permission letter from the institution and the written consent from participants has been received to carry out the study. In the evaluation of the data, frequencies and proportions analysis were used. The average age of women participating in the study was 32.87, the 35.8% were high school graduates, 60.3% were housewife and the 58.9% lived in city. The 30.5% of husbands were high school graduates, the 96.7% were employed and the 60.9% lived in city. The 78.1% of couples lived as a nuclear family, the average marriage year was 7.58, in 33.8% the fertility problem stems from women, 42.4% of them received a diagnosis for 1-2 years, 35.1% were being treated for 1-2 years. The 35.8% of women reported use of non-medical applications. The 24.4% of women used figs, onion cure, hacemat, locust, bee-pollen milk, the 18.2% used herbs, the 13.1% vowed, the 12.1% went to the tomb, the 10.1% did not bath a few days after the embryo transfer, the 9.1% used thermal water baths, the 5.0% manually corrected the womb, the 5.0% printed amulets by Hodja, the 3.0% went to the Hodja/pilgrims. Among the perceived benefits of using non-medical practices; facilitate pregnancy and implantation, improve oocyte quality were the most recently expressed. Women said that they often used herbs to develop follicles, did not bath after embryo transfer with aim to provide implantation, and used thermal waters to get rid of the infection. Compared to women, only the 25.8% of men used the non-medical practice. The 52.1% reported that they used peanuts, hacemat, locust, bee-pollen milk, the 14.9% used herbs, the 12.8% vowed, the 10.1% went to the tomb, the 10.1% used thermal water baths. Improve sperm number, motility and quality were the most expected benefits. Men said that they often used herbs to improve sperm number, used peanuts, hacemat, locust, bee-pollen milk to improve sperm motility and quality. Couples in Turkey often use non-medical practices to deal with fertility problems. Some of the practices considered as useful can adversely affect health. Healthcare providers should evaluate the use of non-medical practices and should inform if the application is known adverse effects on health.Keywords: fertility, couples, non-medical practice, perceived benefit
Procedia PDF Downloads 34262 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 38661 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology
Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma
Abstract:
Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.Keywords: boron, calcium, nutrient utilization, histopathology
Procedia PDF Downloads 31860 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector
Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini
Abstract:
Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products
Procedia PDF Downloads 15159 Human Dental Pulp Stem Cells Attenuate Streptozotocin-Induced Parotid Gland Injury in Rats
Authors: Gehan ElAkabawy
Abstract:
Background: Diabetes mellitus causes severe deteriorations of almost all the organs and systems of the body, as well as significant damage to the oral cavity. The oral changes are mainly related to salivary glands dysfunction characterized by hyposalivation and xerostomia, which significantly reduce diabetic patients’ quality of life. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that the trophic support mediated by dental pulp stem cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of human dental pulp stem cells in diabetic-induced parotid gland damage have not been previously investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of human dental pulp stem cells (hDPSCs) on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. Methods: Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ+hDPSCs). hDPSCs or vehicle was injected into the tail vein 7 days after STZ injection. The fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA) expression in parotid tissues were assessed 28 days post-transplantation. Results: Transplantation of hDPSCs downregulated blood glucose, improved the salivary flow rate, and reduced oxidative stress. The cells migrated to, survived, and differentiated into acinar, ductal, and myoepithelial cells in the STZ-injured parotid gland. Moreover, they downregulated the expression of caspase-3 and upregulated the expression of VEGF and PCNA, likely exerting pro-angiogenetic and antiapoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide (NO) -tetrahydrobiopterin (BH4) pathway. Conclusions: Our results show that hDPSCs can migrate to and survive within the STZ-injured parotid gland, where they prevent its functional and morphological damage by restoring normal glucose levels, differentiating into parotid cell populations, and stimulating paracrine-mediated regeneration. Thus, hDPSCs may have therapeutic potential in the treatment of diabetes-induced parotid gland injury.Keywords: dental pulp stem cells, diabetes, streptozotocin, parotid gland
Procedia PDF Downloads 19658 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission
Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan
Abstract:
As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster
Procedia PDF Downloads 20857 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure
Authors: Volodymyr Rombakh
Abstract:
This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress
Procedia PDF Downloads 9256 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities
Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort
Abstract:
Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.Keywords: environmental radioactivity, Euratom, monitoring report, REMdb
Procedia PDF Downloads 44355 Molecular Identification of Camel Tick and Investigation of Its Natural Infection by Rickettsia and Borrelia in Saudi Arabia
Authors: Reem Alajmi, Hind Al Harbi, Tahany Ayaad, Zainab Al Musawi
Abstract:
Hard ticks Hyalomma spp. (family: Ixodidae) are obligate ectoparasite in their all life stages on some domestic animals mainly camels and cattle. Ticks may lead to many economic and public health problems because of their blood feeding behavior. Also, they act as vectors for many bacterial, viral and protozoan agents which may cause serious diseases such as tick-born encephalitis, Rocky-mountain spotted fever, Q-fever and Lyme disease which can affect human and/or animals. In the present study, molecular identification of ticks that attack camels in Riyadh region, Saudi Arabia based on the partial sequence of mitochondrial 16s rRNA gene was applied. Also, the present study aims to detect natural infections of collected camel ticks with Rickessia spp. and Borelia spp. using PCR/hybridization of Citrate synthase encoding gene present in bacterial cells. Hard ticks infesting camels were collected from different camels located in a farm in Riyadh region, Saudi Arabia. Results of the present study showed that the collected specimens belong to two species: Hyalomma dromedari represent 99% of the identified specimens and Hyalomma marginatum which account for 1 % of identified ticks. The molecular identification was made through blasting the obtained sequence of this study with sequences already present and identified in GeneBank. All obtained sequences of H. dromedarii specimens showed 97-100% identity with the same gene sequence of the same species (Accession # L34306.1) which was used as a reference. Meanwhile, no intraspecific variations of H. marginatum mesured because only one specimen was collected. Results also had shown that the intraspecific variability between individuals of H. dromedarii obtained in 92 % of samples ranging from 0.2- 6.6%, while the remaining 7 % of the total samples of H. dromedarii showed about 10.3 % individual differences. However, the interspecific variability between H. dromedarii and H. marginatum was approximately 18.3 %. On the other hand, by using the technique of PCR/hybridization, we could detect natural infection of camel ticks with Rickettsia spp. and Borrelia spp. Results revealed the natural presence of both bacteria in collected ticks. Rickettsial spp. infection present in 29% of collected ticks, while 35% of collected specimen were infected with Borrelia spp. The valuable results obtained from the present study are a new record for the molecular identification of camel ticks in Riyadh, Saudi Arabia and their natural infection with both Rickettsia spp. and Borrelia spp. These results may help scientists to provide a good and direct control strategy of ticks in order to protect one of the most important economic animals which are camels. Also results of this project spotlight on the disease that might be transmitted by ticks to put out a direct protective plan to prevent spreading of these dangerous agents. Further molecular studies are needed to confirm the results of the present study by using other mitochondrial and nuclear genes for tick identification.Keywords: Camel ticks, Rickessia spp. , Borelia spp. , mitochondrial 16s rRNA gene
Procedia PDF Downloads 27654 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 28653 Prosodic Transfer in Foreign Language Learning: A Phonetic Crosscheck of Intonation and F₀ Range between Italian and German Native and Non-Native Speakers
Authors: Violetta Cataldo, Renata Savy, Simona Sbranna
Abstract:
Background: Foreign Language Learning (FLL) is characterised by prosodic transfer phenomena regarding pitch accents placement, intonation patterns, and pitch range excursion from the learners’ mother tongue to their Foreign Language (FL) which suggests that the gradual development of general linguistic competence in FL does not imply an equally correspondent improvement of the prosodic competence. Topic: The present study aims to monitor the development of prosodic competence of learners of Italian and German throughout the FLL process. The primary object of this study is to investigate the intonational features and the f₀ range excursion of Italian and German from a cross-linguistic perspective; analyses of native speakers’ productions point out the differences between this pair of languages and provide models for the Target Language (TL). A following crosscheck compares the L2 productions in Italian and German by non-native speakers to the Target Language models, in order to verify the occurrence of prosodic interference phenomena, i.e., type, degree, and modalities. Methodology: The subjects of the research are university students belonging to two groups: Italian native speakers learning German as FL and German native speakers learning Italian as FL. Both of them have been divided into three subgroups according to the FL proficiency level (beginners, intermediate, advanced). The dataset consists of wh-questions placed in situational contexts uttered in both speakers’ L1 and FL. Using a phonetic approach, analyses have considered three domains of intonational contours (Initial Profile, Nuclear Accent, and Terminal Contour) and two dimensions of the f₀ range parameter (span and level), which provide a basis for comparison between L1 and L2 productions. Findings: Results highlight a strong presence of prosodic transfer phenomena affecting L2 productions in the majority of both Italian and German learners, irrespective of their FL proficiency level; the transfer concerns all the three domains of the contour taken into account, although with different modalities and characteristics. Currently, L2 productions of German learners show a pitch span compression on the domain of the Terminal Contour compared to their L1 towards the TL; furthermore, German learners tend to use lower pitch range values in deviation from their L1 when improving their general linguistic competence in Italian FL proficiency level. Results regarding pitch range span and level in L2 productions by Italian learners are still in progress. At present, they show a similar tendency to expand the pitch span and to raise the pitch level, which also reveals a deviation from the L1 possibly in the direction of German TL. Conclusion: Intonational features seem to be 'resistant' parameters to which learners appear not to be particularly sensitive. By contrast, they show a certain sensitiveness to FL pitch range dimensions. Making clear which the most resistant and the most sensitive parameters are when learning FL prosody could lay groundwork for the development of prosodic trainings thanks to which learners could finally acquire a clear and natural pronunciation and intonation.Keywords: foreign language learning, German, Italian, L2 prosody, pitch range, transfer
Procedia PDF Downloads 28652 Characteristics of the Mortars Obtained by Radioactive Recycled Sand
Authors: Claudiu Mazilu, Ion Robu, Radu Deju
Abstract:
At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio
Procedia PDF Downloads 19451 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)
Authors: Anupalli Roja Rani, Pavithra Dasari
Abstract:
Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.
Procedia PDF Downloads 11350 Dietary Factors Contributing to Osteoporosis among Postmenopausal Women in Riyadh Armed Forces Hospital
Authors: Rabab Makki
Abstract:
Bone mineral density and bone metabolism are affected by various factors such as genetic, endocrine, mechanical and nutritional. Our understanding of nutritional influences on bone health is limited because most studies have focused on calcium. This study investigated the dietary factors which are likely t contribute to Osteoporosis in Saudi post-menopausal women, and correlated it with BMD. This is a case controlled study involved 36 postmenopausal Saudi females selected from the Orthopedics and osteoporosis outpatient clinics, and 25 postmenopausal Saudi females as controls from the primary clinic of Military Hospital in Riyadh. The women were diagnosed as osteoporotic based on the BMD measurement at any site (left femur neck, right femur neck, left total hip or right total hip or spine). Both the controls and the Osteoporotics were over 50 years of age and BMI between 31-34 kg/m2 had 2nd degree obesity, and were not free from other problems such as diabetes, hypertension, etc. Subjects (osteoporotics and controls) were interviewed to called data on demographic characterstics, medical history, dietary intake anthropometry (height and weight) bone mineral density. Blood samples were collected from subjects (Osteoporotics and controls). Analysis of serum calcium, vitamin D, phosphate were done at the main laboratory at Military Hospital Riyadh, by the laboratory technician while BMD was determined at the department of Nuclear Medicine by an expert technician and results were interpreted by radiologist.Data on frequency of consumption of animal food (meat, eggs, poultry and fish) and diary foods (milk, yogurt, cheese) of osteoporotic was less than control. In spite of the low intake there was no association with BMD.In general, the vegetables and fruits were consumed less by the osteoporotics than control. The only fruit which had shown a significant positive correlation is banana with right and left hip BMD total probably due to high potassium and minerals content which likely to prevent bone resorption. Mataziz vegetables combination of wheat showed a significant positive correlation with the same site (total right and left hip). Both osteoporotics abd controls were consuming table sugar. (But the sweet intake showed a significant negative correlation with left neck femur BMD, suggesting sucrose increase urinary calcium loss. Both osteoporotic and controls were consuming Arabic coffee. A negative significant correlation between intake of Arabic coffee and BMD of right neck femur of osteoporosis patient was observed. It could be suggested that increased intake of fruits and vegetables, might promote bone density while high intake of coffee and sugars might affect bone density, no significant correlation was observed between BMD at any site and diary product. We can say the major risk factors are inadequate nutrition. Further studies are needed among Saudi population to confirm these results.Keywords: osteoporosi, Saudia Arabia, Riyadh Armed Forces, postmenopausal women
Procedia PDF Downloads 408