Search results for: narrative technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7055

Search results for: narrative technique

5885 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 477
5884 Transvaginal Repair of Anterior Vaginal Wall Prolapse with Polyvinylidene Fluoride (PVDF) Mesh: An Alternative for Previously Restricted Materials

Authors: Mohammad-Javad Eslami, Mahtab Zargham, Farshad Gholipour, Mohammadreza Hajian, Katayoun Bakhtiari, Sakineh Hajebrahimi, Melina Eghbal, Ziba Farajzadegan

Abstract:

Introduction: To study the mid-term safety and functional outcomes of transvaginal anterior vaginal wall prolapse repair using polyvinylidene fluoride (PVDF) mesh (DynaMesh®-PR4) by the double trans-obturator technique (TOT). Methods: Between 2015 and 2020, we prospectively included women with symptomatic high-stage anterior vaginal wall prolapse with or without uterine prolapse or stress urinary incontinence (SUI) in the study. The patients underwent transvaginal repair of the prolapse using PVDF mesh in two medical centers. We followed all patients for at least 12 months. We recorded the characteristics of vaginal and sexual symptoms, urinary incontinence, and prolapse stage pre- and postoperatively using International Consultation on Incontinence Questionnaire-Vaginal Symptoms (ICIQ-VS), International Consultation on Incontinence Questionnaire-Urinary Incontinence-Short Form (ICIQ-UI-SF), and Pelvic Organ Prolapse Quantification (POP-Q) system, respectively. Results: One hundred eight women were included in the final analysis with a mean follow-up time of 34.5 ± 18.6 months. The anatomical success was achieved in 103 (95.4%) patients. There was a significant improvement in patients’ vaginal symptoms, urinary incontinence, and quality of life scores postoperatively (p < 0.0001). Only six patients (5.5%) had mesh extrusion, five of whom were managed successfully. The total rates of complications and de novo urinary symptoms were 21.3% and 7.4%, respectively. Significant pain was reported in 17 cases (15.7%). Conclusion: Our findings show that using PVDF mesh in the double TOT technique for anterior vaginal wall prolapse repair is a safe procedure with high anatomic and functional success rates and acceptable complication rates in mid-term follow-up.

Keywords: stress urinary incontinence (SU, incontinence questionnaire-vaginal symptoms (ICIQ-VS), polyvinylidene fluoride (PVDF) mes, double trans-obturator technique (TOT)

Procedia PDF Downloads 13
5883 Serviceability of Fabric-Formed Concrete Structures

Authors: Yadgar Tayfur, Antony Darby, Tim Ibell, Mark Evernden, John Orr

Abstract:

Fabric form-work is a technique to cast concrete structures with a great advantage of saving concrete material of up to 40%. This technique is particularly associated with the optimized concrete structures that usually have smaller cross-section dimensions than equivalent prismatic members. However, this can make the structural system produced from these members prone to smaller serviceability safety margins. Therefore, it is very important to understand the serviceability issue of non-prismatic concrete structures. In this paper, an analytical computer-based model to optimize concrete beams and to predict load-deflection behaviour of both prismatic and non-prismatic concrete beams is presented. The model was developed based on the method of sectional analysis and integration of curvatures. Results from the analytical model were compared to load-deflection behaviour of a number of beams with different geometric and material properties from other researchers. The results of the comparison show that the analytical program can accurately predict the load-deflection response of concrete beams with medium reinforcement ratios. However, it over-estimates deflection values for lightly reinforced specimens. Finally, the analytical program acceptably predicted load-deflection behaviour of on-prismatic concrete beams.

Keywords: fabric-formed concrete, continuous beams, optimisation, serviceability

Procedia PDF Downloads 362
5882 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination

Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto

Abstract:

Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.

Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking

Procedia PDF Downloads 217
5881 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 161
5880 Using Econometric Methods to Explore Obesity Stigma and Avoidance of Breast and Cervical Cancer Screening

Authors: Stephanie A. Schauder, Gosia Sylwestrzak

Abstract:

Overweight and obese women report avoiding preventive care due to fear of weight-related bias from medical professionals. Gynecological exams, due to their sensitive and personally invasive nature, are especially susceptible to avoidance. This research investigates the association between body mass index (BMI) and screening rates for breast and cervical cancer using claims data from 1.3 million members of a large health insurance company. Because obesity is associated with increased cancer risk, screenings for these cancers should increase as BMI increases. However, this paper finds that the distribution of cancer screening rates by BMI take an inverted U-shape with underweight and obese members having the lowest screening rates. For cervical cancer screening, those in the target population with a BMI of 23 have the highest screening rate at 68%, while Obese Class III members have a screening rate of 50%. Those in the underweight category have a screening rate of 58%. This relationship persists even after controlling for health and demographic covariates in regression analysis. Interestingly, there is no association between BMI and BRCA (BReast CAncer gene) genetic testing. This is consistent with the narrative that stigma causes avoidance because genetic testing does not involve any assessment of a person’s body. More work must be done to determine how to increase cancer screening rates in those who may feel stigmatized due to their weight.

Keywords: cancer screening, cervical cancer, breast cancer, weight stigma, avoidance of care

Procedia PDF Downloads 174
5879 It Is Time to Perform Total Laparoscopic Hysterectomy (TLH) without the Use of Uterine Manipulator: Kamran's TLH

Authors: Ahmed Gendia, Waseem Kamran

Abstract:

Objective: Total Laparoscopic hysterectomy (TLH) remains a common approach among laparoscopic surgeons. However, this approach depends on the use of uterine manipulator to facilitate the surgery. Although many studies reported the effectiveness of TLH with uterine manipulator, only few reported TLH without the use of any uterine or vaginal manipulation. the aim of this report is to demonstrate our Technique (kamran's TLH) in performing TLH without the use of any uterine or vaginal manipulation in benign conditions and report our intra- and post-operative outcomes. Methodology : surgical technique will be demonstrated through a short video highlighting the easy and safe to learn surgical steps. Additionally, the data of 86 patients who underwent KTLH for benign condition were retrospectively analyzed. the data included intra- and postoperative finding and complications. Results : A total of 86 hysterectomies were performed utilizing the Kamran's TLH ( KTHL). Mean age was 52.2 (±11) years old and BMI was 28.2(±7). Mean operative time was 64.7(±27.9) minutes and estimated bloods loss was 46.2(±54.6) ml. No intraoperative complications were recorded and there was no conversion to open surgery. Only one patient required readmission and surgery for vaginal vault dehiscence. Conclusion & Significance: Uterine manipulator is a key component in performing laparoscopic hysterectomy. However, our approach demonstrated that TLH can be safely performed without the use of any uterine or vaginal manipulation.

Keywords: laparoscopic hystrectomy, TLH, uterine manipulator, surgery

Procedia PDF Downloads 138
5878 Solar Power Monitoring and Control System using Internet of Things

Authors: Oladapo Tolulope Ibitoye

Abstract:

It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.

Keywords: solar system, internet of things, renewable energy, power monitoring

Procedia PDF Downloads 62
5877 Production of Energetic Nanomaterials by Spray Flash Evaporation

Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer

Abstract:

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Keywords: continuous synthesis, energetic material, nanoscale, nanoexplosive, nanothermite

Procedia PDF Downloads 241
5876 On ‘Freaks’ and the Feminine in Margaret Atwood’s ‘Lusus Naturae’

Authors: Shahd Alshammari

Abstract:

This paper considers one of Margaret Atwood’s short stories ‘Lusus Naturae'. Through a critical lens that makes use of Julia Kristeva’s work on Powers of Horror and abjection, this paper suggests that the monstrous girl is the disabled woman, the abject in society. The monster is used as a metaphor for the unknown, the misunderstood, and the ‘different’ woman. Culturally Relevant Teaching (CRT) is a pedagogy that calls for making course material accessible and relevant to students. Through the study of literary texts, we are able to help create agency inside and outside the classroom. Stories are a necessary part of establishing connections across borders and boundaries. Stories are meant to raise awareness both inside and outside the classroom. The discussion is equally important, and the text is meant to facilitate relevant questions that the students need to consider when it comes to identity. Questions to consider are: what does it mean to be a ‘girl’ today, and what implications and consequences are at hand when you fail to perform this gendered identity? Gender is sometimes a fatal bond in the Middle East, and even more so, is the disability. In the case of our unnamed protagonist, she undergoes a process of un-becoming, a non-linear process of growing up. In a sense, it is a counter-Bildungsroman. The reading of this text emphasizes that a non-linear narrative is sometimes necessary for the female protagonist’s self-awareness and development. Discussion in class facilitates this sense of agency and questioning of gender and disability.

Keywords: disability, gender, literature, pedagogy

Procedia PDF Downloads 635
5875 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 114
5874 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 140
5873 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 64
5872 Microstructure of Ti – AlN Composite Produced by Selective Laser Melting

Authors: Jaroslaw Mizera, Pawel Wisniewski, Ryszard Sitek

Abstract:

Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section.

Keywords: Selective Laser Melting, Composite, SEM, microhardness

Procedia PDF Downloads 123
5871 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 325
5870 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 135
5869 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens

Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini

Abstract:

A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.

Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery

Procedia PDF Downloads 272
5868 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 97
5867 A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms

Authors: A. Shabib-Asl, M. Abdalla Ayoub Mohammed, A. F. Alta’ee, I. Bin Mohd Saaid, P. Paulo Jose Valentim

Abstract:

In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend.

Keywords: GOR, mobility ratio, sweep efficiency, WAG

Procedia PDF Downloads 425
5866 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 243
5865 Interpersonal Emotion Regulation in Adolescence: An Enhanced Critical Incident Study

Authors: Setareh Shayanfar

Abstract:

Given the increasing importance of peer relationships during adolescence, the present study aimed to examine peer interactions that facilitate or hinder adolescents’ regulation of negative emotions. Using the Enhanced Critical Incident Technique, 1-hour semi-structured interviews were conducted with 16 junior high school adolescents. Participants were asked to recall situations when they experienced strong negative emotions during the past school year, indicate the peer interactions that helped or hindered their emotion regulation, and identify prospective interactions with the potential to help regulate their emotions. Data analysis extracted 182 critical incidents, including 109 helping incidents, 45 hindering incidents, and 28 wish list items, which generated 10 categories nested within four overarching themes: Positive Personal Support included (a) supportive presence, (b) expressing concern, (c) empathizing, and (d) encouraging and cheering up; while Strategy Transmission included (e) sharing perspective, and (f) giving advice; Activated Support included (g) taking action, and (h) distracting; while Negative Personal Interactions included (i) withdrawing and (j) punishing. Implications for mental health and service providers, as well as recommendations for future research, are presented.

Keywords: adolescence, emotion regulation, enhanced critical incident technique, peers

Procedia PDF Downloads 122
5864 Identification of Effective Factors on Marketing Performance Management in Iran’s Airports and Air Navigation Companies

Authors: Morteza Hamidpour, Kambeez Shahroudi

Abstract:

The aim of this research was to identify the factors affecting the measurement and management of marketing performance in Iran's airports and air navigation companies (Economics in Air and Airport Transport). This study was exploratory and used a qualitative content analysis technique. The study population consisted of university professors in the field of air transportation and senior airport managers, with 15 individuals selected as samples using snowball technique. Based on the results, 15 main indicators were identified for measuring the marketing performance of Iran's airports and air navigation companies. These indicators include airport staff, general and operational expenses, annual passenger reception capacity, number of counter receptions and passenger dispatches, airport runway length, airline companies' loyalty to using airport space and facilities, regional market share of transit and departure flights, claims and net profit (aviation and non-aviation). By keeping the input indicators constant, the output indicators can be improved, enhancing performance efficiency and consequently increasing the economic situation in air transportation.

Keywords: air transport economics, marketing performance management, marketing performance input factors, marketing performance intermediary factors, marketing performance output factors, content analysis

Procedia PDF Downloads 46
5863 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error

Procedia PDF Downloads 307
5862 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables

Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro

Abstract:

Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.

Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations

Procedia PDF Downloads 233
5861 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique

Authors: P. Kamphikul, P. Krachodnok, R. Wongsan

Abstract:

This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.

Keywords: gain improvement, microstrip antenna array, electromagnetic band gap, base station

Procedia PDF Downloads 291
5860 The User Experience Evaluation Study on Gamified Classroom via Prezi

Authors: Wong Seng Yue

Abstract:

Game dynamics and game mechanics are the two main components that used in gamification to engage and encourage students to learn. The advantages of gamified classroom are engaging students, increasing students interest, preserving students focus and remain a positive behaviour. However, the empirical studies on gamification are still at early stage, especially the effectiveness of various gamification components have not been evaluated. Thus, this study is aimed to conduct a user experience (UX) evaluation on gamified classroom through Prezi, which focused on learning experience, gaming experience, adaptivity, and gameplay experience. This study is a further study extended from the previous exploratory study to explore more on UX of gamified classroom via Prezi by interview. A focus group study, which involves 22 students from a foundation course has been conducted for the study. Besides the empirical data from the previous study, this focus group study has significantly found that 90.9% respondents show their positive perceptions on gaming experience via Prezi. They are interested, feel fresh, good, and highly motivated of the contents of Prezi. 95.5% participants have had a positive learning experience from the gamified classroom via Prezi, which can engage them, made them concentrate on learning and easy to remember what they have learned if compared to the traditional classroom slides. The adaptivity of the gamified classroom also high due to its zooming user interface, narrative, rewards and engagement features. This study has uncovered on how far the impact of gamification components in the classroom, especially UX that implemented in gamified classroom.

Keywords: user experience (UX), gamification, gamified classroom, Prezi

Procedia PDF Downloads 193
5859 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy

Procedia PDF Downloads 97
5858 Exposing Latent Fingermarks on Problematic Metal Surfaces Using Time of Flight Secondary Ion Mass Spectroscopy

Authors: Tshaiya Devi Thandauthapani, Adam J. Reeve, Adam S. Long, Ian J. Turner, James S. Sharp

Abstract:

Fingermarks are a crucial form of evidence for identifying a person at a crime scene. However, visualising latent (hidden) fingermarks can be difficult, and the correct choice of techniques is essential to develop and preserve any fingermarks that might be present. Knives, firearms and other metal weapons have proven to be challenging substrates (stainless steel in particular) from which to reliably obtain fingermarks. In this study, time of flight secondary ion mass spectroscopy (ToF-SIMS) was used to image fingermarks on metal surfaces. This technique was compared to a conventional superglue based fuming technique that was accompanied by a series of contrast enhancing dyes (basic yellow 40 (BY40), crystal violet (CV) and Sudan black (SB)) on three different metal surfaces. The conventional techniques showed little to no evidence of fingermarks being present on the metal surfaces after a few days. However, ToF-SIMS images revealed fingermarks on the same and similar substrates with an exceptional level of detail demonstrating clear ridge definition as well as detail about sweat pore position and shape, that persist for over 26 days after deposition when the samples were stored under ambient conditions.

Keywords: conventional techniques, latent fingermarks, metal substrates, time of flight secondary ion mass spectroscopy

Procedia PDF Downloads 144
5857 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 255
5856 Application of Artificial Ground-Freezing to Construct a Passenger Interchange Tunnel for the Subway Line 14 in Paris, France

Authors: G. Lancellotta, G. Di Salvo, A. Rigazio, A. Davout, V. Pastore, G. Tonoli, A. Martin, P. Jullien, R. Jagow-Klaff, R. Wernecke

Abstract:

Artificial ground freezing (AGF) technique is a well-proven soil improvement approach used worldwide to construct shafts, tunnels and many other civil structures in difficult subsoil or ambient conditions. As part of the extension of Line 14 of the Paris subway, a passenger interchange tunnel between the new station at Porte de CI ichy and the new Tribunal the Grand Instance has been successfully constructed using this technique. The paper presents the successful application of AGF by Liquid Nitrogen and Brine implemented to provide structural stability and groundwater cut-off around the passenger interchange tunnel. The working conditions were considered to be rather challenging, due to the proximity of a hundred-year-old existing service tunnel of the Line 13, and subsoil conditions on site. Laboratory tests were carried out to determine the relevant soil parameters for hydro-thermal-mechanical aspects and to implement numerical analyses. Monitoring data were used in order to check and control the development and the efficiency of the freezing process as well as to back analyze the parameters assumed for the design, both during the freezing and thawing phases.

Keywords: artificial ground freezing, brine method, case history, liquid nitrogen

Procedia PDF Downloads 201