Search results for: missing data estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26522

Search results for: missing data estimation

25352 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 371
25351 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining

Authors: Abubakar Sadiq Mensah

Abstract:

The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.

Keywords: eigenvalues, eigenvectors, population, growth/stability

Procedia PDF Downloads 523
25350 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 279
25349 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 385
25348 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries

Authors: Eyup Dogan

Abstract:

This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.

Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence

Procedia PDF Downloads 297
25347 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities

Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev

Abstract:

We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.

Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation

Procedia PDF Downloads 23
25346 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance

Authors: Jia Yi Yap, Angela S. H. Lee

Abstract:

With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.

Keywords: big data technologies, employee, job performance, questionnaire

Procedia PDF Downloads 300
25345 Support for Reporting Guidelines in Surgical Journals Needs Improvement: A Systematic Review

Authors: Riaz A. Agha, Ishani Barai, Shivanchan Rajmohan, Seon Lee, Mohammed O. Anwar, Alex J. Fowler, Dennis P. Orgill, Douglas G. Altman

Abstract:

Introduction: Medical knowledge is growing fast. Evidence-based medicine works best if the evidence is reported well. Past studies have shown reporting quality to be lacking in the field of surgery. Reporting guidelines are an important tool for authors to optimize the reporting of their research. The objective of this study was to analyse the frequency and strength of recommendation for such reporting guidelines within surgical journals. Methods: A systematic review of the 198 journals within the Journal Citation Report 2014 (surgery category) published by Thomson Reuters was undertaken. The online guide for authors for each journal was screened by two independent groups and results were compared. Data regarding the presence and strength of recommendation to use reporting guidelines was extracted. Results: 193 journals were included (as five appeared twice having changed their name). These had a median impact factor of 1.526 (range 0.047 to 8.327), with a median of 145 articles published per journal (range 29-659), with 34,036 articles published in total over the two-year window 2012-2013. The majority (62%) of surgical journals made no mention of reporting guidelines within their guidelines for authors. Of the journals (38%) that did mention them, only 14% (10/73) required the use of all relevant reporting guidelines. The most frequently mentioned reporting guideline was CONSORT (46 journals). Conclusion: The mention of reporting guidelines within the guide for authors of surgical journals needs improvement. Authors, reviewers and editors should work to ensure that research is reported in line with the relevant reporting guidelines. Journals should consider hard-wiring adherence to them. This will allow peer-reviewers to focus on what is present, not what is missing, raising the level of scholarly discourse between authors and the scientific community and reducing frustration amongst readers.

Keywords: CONSORT, guide for authors, PRISMA, reporting guidelines, journal impact factor, citation analysis

Procedia PDF Downloads 465
25344 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework

Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise

Abstract:

The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.

Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D

Procedia PDF Downloads 173
25343 A Survey on Students' Intentions to Dropout and Dropout Causes in Higher Education of Mongolia

Authors: D. Naranchimeg, G. Ulziisaikhan

Abstract:

Student dropout problem has not been recently investigated within the Mongolian higher education. A student dropping out is a personal decision, but it may cause unemployment and other social problems including low quality of life because students who are not completed a degree cannot find better-paid jobs. The research aims to determine percentage of at-risk students, and understand reasons for dropouts and to find a way to predict. The study based on the students of the Mongolian National University of Education including its Arkhangai branch school, National University of Mongolia, Mongolian University of Life Sciences, Mongolian University of Science and Technology, Mongolian National University of Medical Science, Ikh Zasag International University, and Dornod University. We conducted the paper survey by method of random sampling and have surveyed about 100 students per university. The margin of error - 4 %, confidence level -90%, and sample size was 846, but we excluded 56 students from this study. Causes for exclusion were missing data on the questionnaire. The survey has totally 17 questions, 4 of which was demographic questions. The survey shows that 1.4% of the students always thought to dropout whereas 61.8% of them thought sometimes. Also, results of the research suggest that students’ dropouts from university do not have relationships with their sex, marital and social status, and peer and faculty climate, whereas it slightly depends on their chosen specialization. Finally, the paper presents the reasons for dropping out provided by the students. The main two reasons for dropouts are personal reasons related with choosing wrong study program, not liking the course they had chosen (50.38%), and financial difficulties (42.66%). These findings reveal the importance of early prevention of dropout where possible, combined with increased attention to high school students in choosing right for them study program, and targeted financial support for those who are at risk.

Keywords: at risk students, dropout, faculty climate, Mongolian universities, peer climate

Procedia PDF Downloads 397
25342 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
25341 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.

Keywords: reinforced concrete, FRP laminate, flexural capacity, ductility

Procedia PDF Downloads 292
25340 Bayesian Approach for Moving Extremes Ranked Set Sampling

Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari

Abstract:

In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.

Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling

Procedia PDF Downloads 514
25339 Bariatric Surgery Referral as an Alternative to Fundoplication in Obese Patients Presenting with GORD: A Retrospective Hospital-Based Cohort Study

Authors: T. Arkle, D. Pournaras, S. Lam, B. Kumar

Abstract:

Introduction: Fundoplication is widely recognised as the best surgical option for gastro-oesophageal reflux disease (GORD) in the general population. However, there is controversy surrounding the use of conventional fundoplication in obese patients. Whilst the intra-operative failure of fundoplication, including wrap disruption, is reportedly higher in obese individuals, the more significant issue surrounds symptom recurrence post-surgery. Could a bariatric procedure be considered in obese patients for weight management, to treat the GORD, and to also reduce the risk of recurrence? Roux-en-Y gastric bypass, a widely performed bariatric procedure, has been shown to be highly successful both in controlling GORD symptoms and in weight management in obese patients. Furthermore, NICE has published clear guidelines on eligibility for bariatric surgery, with the main criteria being type 3 obesity or type 2 obesity with the presence of significant co-morbidities that would improve with weight loss. This study aims to identify the proportion of patients who undergo conventional fundoplication for GORD and/or hiatus hernia, which would have been eligible for bariatric surgery referral according to NICE guidelines. Methods: All patients who underwent fundoplication procedures for GORD and/or hiatus hernia repair at a single NHS foundation trust over a 10-year period will be identified using the Trust’s health records database. Pre-operative patient records will be used to find BMI and the presence of significant co-morbidities at the time of consideration for surgery. This information will be compared to NICE guidelines to determine potential eligibility for the bariatric surgical referral at the time of initial surgical intervention. Results: A total of 321 patients underwent fundoplication procedures between January 2011 and December 2020; 133 (41.4%) had available data for BMI or to allow BMI to be estimated. Of those 133, 40 patients (30%) had a BMI greater than 30kg/m², and 7 (5.3%) had BMI >35kg/m². One patient (0.75%) had a BMI >40 and would therefore be automatically eligible according to NICE guidelines. 4 further patients had significant co-morbidities, such as hypertension and osteoarthritis, which likely be improved by weight management surgery and therefore also indicated eligibility for referral. Overall, 3.75% (5/133) of patients undergoing conventional fundoplication procedures would have been eligible for bariatric surgical referral, these patients were all female, and the average age was 60.4 years. Conclusions: Based on this Trust’s experience, around 4% of obese patients undergoing fundoplication would have been eligible for bariatric surgical intervention. Based on current evidence, in class 2/3 obese patients, there is likely to have been a notable proportion with recurrent disease, potentially requiring further intervention. These patient’s may have benefitted more through undergoing bariatric surgery, for example a Roux-en-Y gastric bypass, addressing both their obesity and GORD. Use of patient written notes to obtain BMI data for the 188 patients with missing BMI data and further analysis to determine outcomes following fundoplication in all patients, assessing for incidence of recurrent disease, will be undertaken to strengthen conclusions.

Keywords: bariatric surgery, GORD, Nissen fundoplication, nice guidelines

Procedia PDF Downloads 60
25338 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
25337 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal

Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu

Abstract:

Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.

Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization

Procedia PDF Downloads 389
25336 Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants

Authors: Mehmet Akif Bütüner, İlhan Koşalay

Abstract:

Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows.

Keywords: hydroelectric, governor, anomaly detection, machine learning, regression

Procedia PDF Downloads 99
25335 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 73
25334 Holy Quran’s Hermeneutics from Self-Referentiality to the Quran by Quran’s Interpretation

Authors: Mohammad Ba’azm

Abstract:

The self-referentiality method as the missing ring of the Qur’an by Qur’an’s interpretation has a precise application at the level of the Quranic vocabulary, but after entering the domain of the verses, chapters and the whole Qur’an, it reveals its defect. Self-referentiality cannot show the clear concept of the Quranic scriptures, unlike the Qur’an by Qur’an’s interpretation method that guides us to the comprehension and exact hermeneutics. The Qur’an by Qur’an’s interpretation is a solid way of comprehension of the verses of the Qur'an and does not use external resources to provide implications and meanings with different theoretical and practical supports. In this method, theoretical supports are based on the basics and modalities that support and validate the legitimacy and validity of the interpretive method discussed, and the practical supports also relate to the practitioners of the religious elite. The combination of these two methods illustrates the exact understanding of the Qur'an at the level of Quranic verses, chapters, and the whole Qur’an. This study by examining the word 'book' in the Qur'an shows the difference between the two methods, and the necessity of attachment of these, in order to attain a desirable level for comprehensions meaning of the Qur'an. In this article, we have proven that by aspects of the meaning of the Quranic words, we cannot say any word has an exact meaning.

Keywords: Qur’an’s hermeneutic, self-referentiality, The Qur’an by Qur’an’s Interpretation, polysemy

Procedia PDF Downloads 189
25333 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358
25332 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve

Procedia PDF Downloads 204
25331 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems

Authors: Andrey V. Timofeev

Abstract:

A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.

Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation

Procedia PDF Downloads 257
25330 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
25329 The Effect of Artificial Intelligence on Autism Attitudes and Laws

Authors: Nermin Noshi Esraeil Abdalla

Abstract:

Inclusive schooling offerings for college kids with Autism stays in its early developmental levels in Thailand. despite many greater youngsters with autism are attending schools since the Thai authorities brought the training Provision for human beings with Disabilities Act in 2008, the services students with autism and their families obtain are typically missing. This quantitative examine used attitude and Preparedness to educate college students with Autism Scale (APTSAS) to investigate 110 number one faculty teachers’ attitude and preparedness to educate college students with autism inside the widespread training school room. Descriptive statistical evaluation of the records discovered that scholar behavior changed into the most good sized factor in constructing teachers’ terrible attitudes students with autism. the majority of teachers additionally indicated that their pre-service schooling did not put together them to fulfill the mastering needs of children with autism especially, folks who are non-verbal. The take a look at is substantial and offers path for enhancing trainer education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 25
25328 Cranioplasty with Custom Implant Realized Using 3D Printing Technology

Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik

Abstract:

Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA

Procedia PDF Downloads 112
25327 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 69
25326 Resistances among Sexual Offenders on Specific Stage of Change

Authors: Chang Li Yu

Abstract:

Resistances commonly happened during sexual offenders treatment program (SOTP), and removing resistances was one of the treatment goals on it. Studies concerning treatment effectiveness relied on pre- and post-treatment evaluations, however, no significant difference on resistance revealed after treatment, and the above consequences generally contributed to the low motivation for change instead. Therefore, the aim of this study was to investigate the resistance across each stage of change among sexual offenders (SO). The present study recruited prisoned SO in Taiwan, excluding those with literacy difficulties; finally, 272 participants were included. Of all participants completed revised version of URICA (University of Rhode Island Change Assessment) and resistance scale specifically for SO. The former included four stages of change: pre-contemplation (PC), contemplation (C), action (A), and maintain (M); the later composed eight types of resistance: system blaming, victims blaming, problems with treatment alliance, social justification, hopelessness, isolation, psychological reactance, and passive reactance. Both of the instruments were with well reliability and validity. Descriptive statistics and ANOVA were performed. All of 272 participants, age under 25 were 18(6.6%), 25-39 were 133(48.9%), 40-54 were 102(37.5%), and age over 55 were 19(7.0%); college level and above were 53(19.5%), high school level were 110(40.4%), and under high school level were 109(40.1%); first offended were 117(43.0%), and recidivist were 23(8.5%). Further deleting data with missing values and invalid questionnaires, SO with stage of change on PC were 43(18.9%), C were 109(47.8%), A were 70(30.7%), and on M were 6(2.6%). One-way ANOVA showed significant differences on every kind of resistances, excepting isolation and passive reactance. Post-hoc analysis showed that SO with different stages had their main resistance. There are two contributions to the present study. First, this study provided a clinical and theoretical measurement of evaluation that was never used in the past. Second, this study used an evidence-based methodology to prove a clinical perspective differed from the past, suggesting that resistances to treatment on SO appear the whole therapeutic process, when SO progress into the next stage of change, clinicians have to deal with their main resistance for working through the therapy.

Keywords: resistance, sexual offenders treatment program (SOTP), motivation for change, prisoned sexual offender

Procedia PDF Downloads 245
25325 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 85
25324 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
25323 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157