Search results for: low input farming
1596 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint
Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier
Abstract:
Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture
Procedia PDF Downloads 5421595 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 1961594 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS
Procedia PDF Downloads 3991593 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment
Procedia PDF Downloads 2781592 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.Keywords: soil organic carbon, soil inorganic carbon, carbon sequestration, open burning, sugarcane
Procedia PDF Downloads 3061591 Eco-Literacy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening
Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León García
Abstract:
One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and non-governmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the eco-technologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.Keywords: farming eco-technologies, food security, multidisciplinary, pedagogical praxis
Procedia PDF Downloads 3171590 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4351589 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data
Authors: Sachin Nagargoje
Abstract:
Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.Keywords: semi-supervised learning, clustering, recall, coverage
Procedia PDF Downloads 1221588 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2741587 Impact of Agroforestry Practices on Biodiversity Management and Livelihoods of Communities Adjacent Magamba Nature Reserve(MNR), Tanzania
Authors: P. J. Kagosi, M. Mndolwa, E. Japhate
Abstract:
The study was conducted to communities adjacent MNR, Lushoto district, Tanzania. The MNR is one of the nine nature reserves in the Eastern Arc Mountains of Tanzania with an area of 8,700ha with high biological diversity. However, biodiversity in MNR have been threatened by increasing human activities for livelihood in 1970s. The AF systems in the study area was practised since 1980s however, no study was conducted on AF impacts. This paper presents the influence of AF on livelihood of communities adjacent MNR and biodiversity conservation. Qualitative and quantitative data were collected using socio-economic survey and botanical surveys. Data were analysed using Statistical Packages for Social Sciences and content analysis. The study found that in 1970s free livestock grazing caused considerable surface runoff, soil erosion and reduction of crop production. Since 1980s, the study area received various interventions based on the land conservations and improved livelihood through practising AF systems. It was further found that the AF farming improved crop productivity, reduced soil erosion, increased firewood (80.2%) and other forest products availability and AF encouraged community members practicing indoor livestock keeping.The dominant agroforestry tree found in the study area is grevillea reported by 74.1% of respondents planting an average of 40 trees. The study found that the AF reduced pressure to MNR as forest products and fodders were obtained from community's farms in turn, currently water flow from MNR has been increased. Thus AF products support livelihood needs and conserve biodiversity. The study recommends continuity education on new AF technology packages.Keywords: impact of agroforestry, biodiversity management, communities’ livelihoods, Magamba nature reserve
Procedia PDF Downloads 3541586 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6381585 Extending Image Captioning to Video Captioning Using Encoder-Decoder
Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige
Abstract:
This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU
Procedia PDF Downloads 1081584 AI In Health and Wellbeing - A Seven-Step Engineering Method
Authors: Denis Özdemir, Max Senges
Abstract:
There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.Keywords: recommender systems, natural language processing, health apps, engineering methods
Procedia PDF Downloads 1651583 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3301582 Analysis of Farm Management Skills in Broiler Poultry Producers in Botswana
Authors: Som Pal Baliyan
Abstract:
The purpose of this quantitative study was to analyze farm management skills in broiler poultryproducers in Botswana. The study adopted a descriptive and correlation research design. The population of the study was the poultry farm operators who had been in broiler poultry farming at least for two years. Based on the information from literature, a questionnaire was constructed for data collection on seven areas of farm management skills namely; planning skills, accounting and financial management skills, production management skills, product procurement and marketing skills, decision making skills, risk management skills, and specific technical skills. The validity and reliability of the questionnaire were accomplished by a panel of experts and by calculating the Cronbach’s alpha coefficient, respectively. Data were collected through a survey of 60 randomly sampled poultry farm operators in Botswana. Data were analyzed through descriptive statistical tools whereby the level of farm management skills were determined by calculating means and standard deviations of the management skills among the broiler producers. The level of farm management skills in broilers producers was discussed. All the seven farm management skills were ranked based on their calculated means. The specific technical skills and risk management skills were the highest and the lowest ranked farm management skills, respectively.Findings revealed that the broiler producers had skills above the average level only in specific technical skills whereas the skill levels in the remaining six farm management skills under study were found below the average level. This prevailing low level of farm management skills can be justified asthe cause of failure or poor performance of the broiler poultry farms in Botswana. Therefore, in order to improve the efficiency and productivityin broiler production in the country, it was recommended that the broiler poultry producers should be adequately trained in areas of planning skills, financial management skills, production management skills, product procurement and marketing skills, decision making skills and risk management skills.Keywords: poultry production, broiler production, management skills, levels of skills
Procedia PDF Downloads 4001581 Diversification of Rice-Based Cropping Systems under Irrigated Condition
Authors: A. H. Nanher, N. P. Singh
Abstract:
In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat
Procedia PDF Downloads 4241580 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools
Authors: M. Johnson, R. Faggian, V. Sposito
Abstract:
A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.Keywords: agriculture, decision-support management tool, Geographic Information System, GIS, sustainable intensification
Procedia PDF Downloads 1661579 Greenhouse Gas Emissions from a Tropical Eutrophic Freshwater Wetland
Authors: Juan P. Silva, T. R. Canchala, H. J. Lubberding, E. J. Peña, H. J. Gijzen
Abstract:
This study measured the fluxes of greenhouse gases (GHGs) i.e. CO2, CH4 and N2O from a tropical eutrophic freshwater wetland (“Sonso Lagoon”) which receives input loading nutrient from several sources i.e. agricultural run-off, domestic sewage, and a polluted river. The flux measurements were carried out at four different points using the static chamber technique. CO2 fluxes ranged from -8270 to 12210 mg.m-2.d-1 (median = 360; SD = 4.11; n = 50), CH4 ranged between 0.2 and 5270 mg.m-2.d-1 (median = 60; SD = 1.27; n = 45), and N2O ranged from -31.12 to 15.4 mg N2O m-2.d-1 (median = 0.05; SD = 9.36; n = 42). Although some negative fluxes were observed in the zone dominated by floating plants i.e. Eichornia crassipes, Salvinia sp., and Pistia stratiotes L., the mean values indicated that the Sonso Lagoon was a net source of CO2, CH4 and N2O. In addition, an effect of the eutrophication on GHG emissions could be observed in the positive correlation found between CO2, CH4 and N2O generation and COD, PO4-3, NH3-N, TN and NO3-N. The eutrophication impact on GHG production highlights the necessity to limit the anthropic activities on freshwater wetlands.Keywords: eutrophication, greenhouse gas emissions, freshwater wetlands, climate change
Procedia PDF Downloads 3611578 Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria
Authors: S. J. Ha, S. J. Baik, T. O. Kim, S. W. Han
Abstract:
For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively.Keywords: algorithm, ground motion, response history analysis, selection
Procedia PDF Downloads 2861577 Sex Education: The Teacher’s Discourses About the Relation Between the Children and the Media, Concerning Sex Education and the Childhood
Authors: Katerina Samartzi
Abstract:
This study focuses on the teacher’s discourses in Greece, about the relation between the children and the media, concerning sex education and widely the childhood. The teachers’ input reflect the anxieties and the dominant discourses that exist around these issues. The study begins with the critical discussion of the available literature concerning the potential impact of media and the ‘moral panics’, their role in sex education and the children’s use of sexual material. Moreover, the study analyses the social construction of childhood and sexuality. Given the lack of explicit and official protocol for the sex education in Greece and due the fact that the young people are familiar with all the material provided by the New Media and their part as an informal education, this project aims to point out the factors that reinforce these gaps. This study focuses on the way the adults and specifically teachers contextualize the children’s relation with media, their sexuality, the sex education, the use of sexual material and the childhood.Keywords: childhood, children's sexuality, media, moral panics, pornography, sex education
Procedia PDF Downloads 1751576 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.Keywords: robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation
Procedia PDF Downloads 3901575 Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices
Authors: Shubham Jaiswal
Abstract:
In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term.Keywords: two-dimensional solute transport system, spectral collocation method, Chebyshev polynomials, Chebyshev differentiation matrix
Procedia PDF Downloads 2321574 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground
Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee
Abstract:
To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk
Procedia PDF Downloads 3361573 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease
Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller
Abstract:
Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics
Procedia PDF Downloads 761572 Analysis of Access to Credit among Rural Farmers in Giwa Local Government Area of Kaduna State, Nigeria
Authors: S. Ibrahim, Bashir Umar
Abstract:
Agricultural credit is very important for sustainable agricultural development to be achieved in any country of the world. Rural credit has proven to be a powerful instrument against poverty reduction and development in rural area. Agricultural credit enhances productivity and promotes standard of living by breaking vicious cycle of poverty of small scale farmers. This study examined access to credit among rural farmers in Giwa local government area of Kaduna state. Two stages sampling procedure was employed to select forty-two (42) respondents for the study. Primary data were collected using structured questionnaire with the help of well-trained enumerators. Data were analyzed using simple descriptive statistics. The results revealed that farmers were predominantly male (57.1%) and most (54.7%), were married with one level of education or another (66.5.%). Majority of the households’ head were between the ages of 31 to 50. majority of the farmers (68.2%) had more than 2ha of farmlands with at least 5 years of farming experience and an annual farm income of N 61,000 to 100,000 (61.9%). The Various sources of credit by the farmers in the study area were commercial banks (38.1%), Co-operative banks (47.6%), Development banks (14.2%) (formal) and Relatives (26.1%), Personal Savings (Adashi scheme) (52.3%), Moneylenders (21.4%) (informal). As regard to the amount of credit obtained by the farmers 38.1% received N 50,000-100,000, 50 % obtained N 100,001-500,000 while 11.9% obtained N 500,001-1,000,000. High interest Inadequate collateral, Complicated Procedures, lack of guarantor were the major constrains encountered by the farmers in accessing loans. The study therefore recommends that Rural farmers should be encouraged to form credit and thrift cooperative societies from which they can access much cheaper credits, Moreover, to ensure that any credit obtained may be manageable for the farmers, financial institutions should provide loans with low interest rates and government and non-governmental organizations should simplify procedures associated with accessing loans.Keywords: analysis, access, credit, farmers
Procedia PDF Downloads 621571 Investigation of Cascade Loop Heat Pipes
Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah
Abstract:
The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.Keywords: biomaterial, cascade loop heat pipe, screen mesh, sintered Cu
Procedia PDF Downloads 2641570 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing
Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang
Abstract:
With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.Keywords: heat island effect, neural network, comprehensive evaluation, visualization
Procedia PDF Downloads 1331569 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation
Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi
Abstract:
This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control
Procedia PDF Downloads 1181568 The Processing of Context-Dependent and Context-Independent Scalar Implicatures
Authors: Liu Jia’nan
Abstract:
The default accounts hold the view that there exists a kind of scalar implicature which can be processed without context and own a psychological privilege over other scalar implicatures which depend on context. In contrast, the Relevance Theorist regards context as a must because all the scalar implicatures have to meet the need of relevance in discourse. However, in Katsos, the experimental results showed: Although quantitatively the adults rejected under-informative utterance with lexical scales (context-independent) and the ad hoc scales (context-dependent) at almost the same rate, adults still regarded the violation of utterance with lexical scales much more severe than with ad hoc scales. Neither default account nor Relevance Theory can fully explain this result. Thus, there are two questionable points to this result: (1) Is it possible that the strange discrepancy is due to other factors instead of the generation of scalar implicature? (2) Are the ad hoc scales truly formed under the possible influence from mental context? Do the participants generate scalar implicatures with ad hoc scales instead of just comparing semantic difference among target objects in the under- informative utterance? In my Experiment 1, the question (1) will be answered by repetition of Experiment 1 by Katsos. Test materials will be showed by PowerPoint in the form of pictures, and each procedure will be done under the guidance of a tester in a quiet room. Our Experiment 2 is intended to answer question (2). The test material of picture will be transformed into the literal words in DMDX and the target sentence will be showed word-by-word to participants in the soundproof room in our lab. Reading time of target parts, i.e. words containing scalar implicatures, will be recorded. We presume that in the group with lexical scale, standardized pragmatically mental context would help generate scalar implicature once the scalar word occurs, which will make the participants hope the upcoming words to be informative. Thus if the new input after scalar word is under-informative, more time will be cost for the extra semantic processing. However, in the group with ad hoc scale, scalar implicature may hardly be generated without the support from fixed mental context of scale. Thus, whether the new input is informative or not does not matter at all, and the reading time of target parts will be the same in informative and under-informative utterances. People’s mind may be a dynamic system, in which lots of factors would co-occur. If Katsos’ experimental result is reliable, will it shed light on the interplay of default accounts and context factors in scalar implicature processing? We might be able to assume, based on our experiments, that one single dominant processing paradigm may not be plausible. Furthermore, in the processing of scalar implicature, the semantic interpretation and the pragmatic interpretation may be made in a dynamic interplay in the mind. As to the lexical scale, the pragmatic reading may prevail over the semantic reading because of its greater exposure in daily language use, which may also lead the possible default or standardized paradigm override the role of context. However, those objects in ad hoc scale are not usually treated as scalar membership in mental context, and thus lexical-semantic association of the objects may prevent their pragmatic reading from generating scalar implicature. Only when the sufficient contextual factors are highlighted, can the pragmatic reading get privilege and generate scalar implicature.Keywords: scalar implicature, ad hoc scale, dynamic interplay, default account, Mandarin Chinese processing
Procedia PDF Downloads 3221567 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 59