Search results for: heat transfer and pressure drop
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8809

Search results for: heat transfer and pressure drop

7639 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 363
7638 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 117
7637 Buoyancy Effects in Pressure Retarded Osmosis with Extremely High Draw Solution Concentration

Authors: Ivonne Tshuma, Ralf Cord-Ruwisch, Wendell Ela

Abstract:

Water crisis is a world-wide problem because of population growth and climate change. Hence, desalination is a solution to water scarcity, which threatens the world. Reverse osmosis (RO) is the most used technique for desalination; unfortunately, this process, usually requires high-pressure requirement hence requires a lot of energy about 3 – 5.5 KWhr/m³ of electrical energy. The pressure requirements of RO can be alleviated by the use of PRO (pressure retarded osmosis) to drive the RO process. This paper proposes a process of utilizing the energy directly from PRO to drive an RO process. The paper mostly analyses the PRO process parameters such as cross-flow velocity, density, and buoyancy and how these have an effect on PRO hence ultimately the RO process. The experimental study of the PRO with various feed solution concentrations and cross-flow velocities at fixed applied pressure with different orientations of the PRO cell was performed. The study revealed that without cross-flow velocity, buoyancy effects were observed but not with cross-flow velocity.

Keywords: cross-flow velocity, pressure retarded osmosis, density, buoyancy

Procedia PDF Downloads 138
7636 Effect of Weave on Cotton Fabric to Improve the Durable Press Finish Rating

Authors: Mayur Kudale, Priyanka Panchal

Abstract:

Cellulose fibres, mainly cotton, are the most important kind of fibre used for manufacturing shirting fabric. However, to overcome its main disadvantage, that is it gets wrinkled after washing, is to use special kind of finish which is resin finish. This finish provides a resistance against shrinkage along with improved wet and dry wrinkle recovery to cellulosic textiles. The Durable Press (DP) finish uses a mechanism of cross-linking with polymers or resin to inhibit the easy movement of the cellulose chains. The purpose of these experimentations on the weave is to observe and compare the variations in properties after DP finish without adverse effect on strength of the fabric. In this work, we have prepared three types of fabric weaves viz. Plain, Twill and Sateen with their construction parameters intact. To get the projected results, this work uses three types of variables viz. concentration of Resin, Temperature and Time. Resultant of these variables is only change in weave or construction on DP finish which further opens the possibilities of improvement of DP either of mentioned weaves. The combined effect of such various parametric resin finish methodology will give the best method to improve the DP. However, the DP finish can cause a side effect of reduction in elasticity and flexibility of cellulosic fibres. The natural cellulose could loss abrasion resistance along with tear and tensile strength by applying DP finish. In this work, it is taken care that the tear strength of fabric will not drop below certain limit otherwise the fabric will tear down easily. In this work, it is found that there is a significant drop in tearing and tensile strength with the improvement of DP finish. Later on, it is also found that the twill weave has more percentage drop in tearing strength as compared to plain and sateen weave. There is major kind of observations obtained after this work. First, the mixing of cotton should be done properly to achieve the higher DP rating in plain weave. Second, the careful combination of warp, weft and fabric construction must be decided to avoid the high drop in tear and tensile strength in a twill weave. Third, the sateen weave has a good sheen and DP rating hence it can be used in shirting of gents and ladies dress materials. This concludes that to achieve higher DP ratings, use plain weave construction than twill and sateen because it has the lowest tear and tensile strength drop.

Keywords: concentration of resin, cross-linking, durable press (DP) finish, sheen, tear and tensile strength, weave

Procedia PDF Downloads 302
7635 The Transfer of Low-Cost Housing in South Africa: Problems and Impediments

Authors: Gert Van Schalkwyk, Chris Cloete

Abstract:

South Africa is experiencing a massive housing backlog in urban low-cost housing. A backlog in the transfer of low-cost housing units is exacerbated by various impediments and delays that exist in the current legal framework. Structured interviews were conducted with forty-five practicing conveyancers and fifteen deeds office examiners at the Deeds Office in Pretoria, South Africa. One of the largest, the Deeds Office in Pretoria implements a uniform registration process and can be regarded as representative of other deeds offices in South Africa. It was established that a low percentage of low-cost properties are freely transferable. The main economic impediments are the absence of financing and the affordability or payment of rates and taxes to local government. Encroachment of buildings on neighboring stands caused by the enlargement of existing small units on small stands also causes long-term unresolved legal disputes. In addition, as the transfer of properties is dependent on the proper functioning of administrative functions of various government departments, the adverse service delivery of government departments hampers transfer. Addressing the identified problems will contribute to a more sustainable process for the transfer of low-cost housing units in South Africa.

Keywords: conveyancing, low-cost housing, South Africa, tenure, titling, transfer

Procedia PDF Downloads 136
7634 Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation

Authors: Saeed Chamehsara, Seyed Mostafa Mirsalim, Mehdi Tajdari

Abstract:

In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively.

Keywords: CFD simulation, HD diesel engine, upgrading power, injection pressure, fuel injection discharge curve, combustion process

Procedia PDF Downloads 523
7633 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: electric field, finite element method, microwave energy, natural rubber glove

Procedia PDF Downloads 263
7632 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: absorption, crystallization, experimental results, lithium bromide solution

Procedia PDF Downloads 310
7631 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 156
7630 Experimental Support for the District Metered Areas/Pressure Management Areas Application

Authors: K. Ilicic, D. Smoljan

Abstract:

The purpose of the paper is to present and verify a methodology of decreasing water losses by introducing and managing District Metered Areas (DMA) and Pressure Management Areas (PMA) by analyzing the results of the application of the methodology to the water supply system of the city of Zagreb. Since it is a relatively large system that has been expanding rapidly, approach to addressing water losses was possible only by splitting the system to smaller flow and pressure zones. Besides, the geographical and technical limitations had imposed the necessity of high pressure in the system that needed to be reduced to the technically optimal level. Results of activities were monitored on a general and local level by establishing, monitoring, and controlling indicators that had been established by the International Water Association (IWA), among which the most recognizable were non-revenue water, water losses and real losses as presented in the paper.

Keywords: district metered area, pressure metered area, active leakage control, water losses

Procedia PDF Downloads 184
7629 Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device

Authors: SeungHee Ryu, Junil Moon

Abstract:

The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units.

Keywords: magnetic resonance coupling, wireless power transfer, power transfer efficiency.

Procedia PDF Downloads 511
7628 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 290
7627 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 164
7626 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 455
7625 Contractual Risk Transfer in Islamic Home Financing: Analysis in Bank Malaysia

Authors: Ahmad Dahlan Salleh, Nik Abdul Rahim Nik Abdul Ghani, Muhamad Firdaus M. Hatta

Abstract:

Risk management has implications on pricing, governance arrangements, business practices and strategy. Nowadays, home financing contract offers more in the risk transfer form to increase bank profit. This is parallel with Islamic jurisprudence method al-Kharaj bi al-thaman (gain accompanies liability for loss) and al-ghurm bil ghunm (gain is justified with risk) that determine the matching between risk transfer and returns. Malaysian financing trend is to buy house. Besides, exists transparency lacking risk transfer issues to the clients because of not been informed clearly. Terms and conditions of each financing also do not reflect clearly that the risk has been transferred to the client, justifying a determination price been made. The assumption on risk occurrence is also inaccurate as each risk is different with the type of financing contract. This makes the Islamic Financial Services Act 2013 in providing standards that transparent and consistent can be used by Islamic financial institution less effective. This study examines how far the level of the risk and obligation incurred by bank and client under various Islamic home financing contract. This research is qualitative by using two methods, document analysis, and semi-structured interviews. Document analysis from literature review to identify profile, themes and risk transfer element in home financing from Islamic jurisprudence perspective. This study finds that need to create a risk transfer parameter by banks which are consistent with risk transfer theory according to Islamic jurisprudence. This study has potential to assist the authority in Islamic finance such as The Central Bank of Malaysia (Bank Negara Malaysia) in regulating Islamic banking industry so that the risk transfer valuation in home financing contract based on home financing good practice and determined risk limits.

Keywords: risk transfer, home financing contract, Sharia compliant, Malaysia

Procedia PDF Downloads 422
7624 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete

Authors: Fatih Hattatoglu, Abdulrezzak Bakiş

Abstract:

In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.

Keywords: combined cure, flexural test, reactive powder concrete (RPC), rigid pavement, pressure test

Procedia PDF Downloads 209
7623 Stand Alone Multiple Trough Solar Desalination with Heat Storage

Authors: Abderrahmane Diaf, Kamel Benabdellaziz

Abstract:

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.

Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system

Procedia PDF Downloads 440
7622 Performance Evaluation of Adsorption Refrigerating Systems

Authors: Nadia Allouache, Omar Rahli

Abstract:

Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.

Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.

Procedia PDF Downloads 79
7621 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe

Authors: E. Marušić-Paloka, I. Pažanin, M. Prša

Abstract:

Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.

Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction

Procedia PDF Downloads 238
7620 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh

Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig

Abstract:

Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.

Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg

Procedia PDF Downloads 47
7619 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

A heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed a PID controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software, and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia PDF Downloads 220
7618 Simulation of Welded Steel Tube Subjected to Internal Pressure

Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche

Abstract:

The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.

Keywords: castem, pressure, stress, tubes, thickness

Procedia PDF Downloads 327
7617 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 290
7616 Modeling and Design of Rectenna for Low Power Medical Implants

Authors: Madhav Pant, Khem N. Poudel

Abstract:

Wireless power transfer is continuously becoming more powerful and compact in medical implantable devices and the wide range of applications. A rectenna is designed for wireless power transfer technique that can be applied to medical implant devices. The experiment is performed using ANSYS HFSS, a full wave electromagnetic simulation. The dipole antenna combinations operating at 2.4 GHz are used for wireless power transfer and the maximum DC voltage reception by the implant considering International Commission on Non-Ionizing Radiation Protection (ICNIRP) regulation. The power receiving dipole antenna is placed inside the cylindrical geometry having the similar properties of the human body at the frequency of 2.4 GHz. Our design can provide the power at the depth of 5 mm skin and 5mm of bone for the implant. The voltage doubler/quadrupler rectifier in ANSYS Simplorer is used to calculate the exact DC current utilized by implant inside the human body. The qualitative design and analysis of this wireless power transfer method could also be used for other biomedical implants systems such as cardiac pacemaker, insulin pump, and retinal implants.

Keywords: dipole antenna, medical implants, wireless power transfer, rectifier

Procedia PDF Downloads 173
7615 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 263
7614 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 174
7613 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 481
7612 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 484
7611 A Semi-Automatic Mechanism Used in the Peritoneal Dialysis Connection

Authors: I-En Lin, Feng-Jung Yang

Abstract:

In addition to kidney transplant, renal replacement therapy involves hemodialysis and peritoneal dialysis (PD). PD possesses advantages such as maintaining stable physiological blood status and blood pressure, alleviating anemia, and improving mobility, which make it an ideal method for at-home dialysis treatment. However, potential danger still exists despite the numerous advantages of PD, particularly when patients require dialysis exchange four to five times a day, during which improper operation can easily lead to peritonitis. The process of draining and filling is called an exchange and takes about 30 to 40 minutes. Connecting the transfer set requires sterile technique. Transfer set may require a new cap each time that it disconnects from the bag after an exchange. There are many chances to get infection due to unsafe behavior (ex: hand tremor, poor eyesight and weakness, cap fall-down). The proposed semi-automatic connection mechanism used in the PD can greatly reduce infection chances. This light-weight connection device is portable. The device also does not require using throughout the entire process. It is capable of significantly improving quality of life. Therefore, it is very promising to adopt in home care application.

Keywords: automatic connection, catheter, glomerulonephritis, peritoneal dialysis

Procedia PDF Downloads 237
7610 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants

Authors: Ambra Giovannelli, Coriolano Salvini

Abstract:

Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.

Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants

Procedia PDF Downloads 217