Search results for: buffer zone
792 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey
Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun
Abstract:
In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.Keywords: Konya second organized industrial region, strength, compressibility, soft clay
Procedia PDF Downloads 309791 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.Keywords: grade 70, GTAW, hybrid welding, SAW, SMAW
Procedia PDF Downloads 339790 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity
Authors: Muhammad Tariq A. Chaudhary
Abstract:
Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction
Procedia PDF Downloads 232789 Isolation and Antifungal Susceptibility Pattern of Candida albicans from Endocervical and High Vaginal Swabs of Pregnant Women Attending State Specialist Hospital Gombe, Nigeria
Authors: Isa Shu’aibu, A. A. Mu’inat, F. U. Maigari, M. A. Mani
Abstract:
Candida albicans is the common cause of both oral and vaginal candidiasis in humans. This candidiasis leads to a wide range of physical, psychological and even physiological problems in humans particularly pregnant women. Samples of endocervical and high vaginal swab were collected from 200 women attending Gombe Specialist Hospital and inoculated on Saboraud Dextrose Agar (SDA) incorporated with chloramphenicol to get rid of the unwanted bacterial contaminants. Gram staining technique and germ tube test were employed for the identification, as Candida albicans is positive for both. Gram positive samples were 70% (n=140) and were further subjected to germ tube test. The remaining 30% (n=60) were found to be Gram negative. 90% (n=126) of the Gram positive ones isolated were also found to be positive for germ tube test; confirming the presence of Candida albicans. Antifungal susceptibility testing revealed that members of Imidazole (Ketoconazole, Miconazole) and those of Triazoles (Fluconazole and Itraconazole) were found to be more effective at concentrations of 20, 50 and 100 µg/disc compared to Griseofulvin (Fulcin) with only 26.00 mm zone of inhibition at 100 µg/disc concentration.Keywords: Candida albicans, candidiasis, endocervical, vaginal swab, antifungal susceptibility, imidazole, triazoles
Procedia PDF Downloads 332788 A Comparative Analysis of Thermal Performance of Building Envelope Types over Time
Authors: Aram Yeretzian, Yaser Abunnasr, Zahraa Makki, Betina Abi Habib
Abstract:
Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design.Keywords: architecture, wall construction, envelope performance, thermal comfort
Procedia PDF Downloads 234787 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering
Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris
Abstract:
Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibilityKeywords: biomaterials, nanocomposites, scaffolds, tissue engineering
Procedia PDF Downloads 316786 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia
Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan
Abstract:
In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale
Procedia PDF Downloads 317785 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy
Authors: Hyunki Kang, Hi Won Jeong
Abstract:
The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair
Procedia PDF Downloads 40784 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment
Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová
Abstract:
Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.Keywords: nitrogen, compost, biomass production, lysimeter
Procedia PDF Downloads 352783 Comparison of Different Techniques to Estimate Surface Soil Moisture
Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini
Abstract:
Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil
Procedia PDF Downloads 359782 Effect of Postweld Soaking Temperature on Mechanical Properties of AISI 1018 Steel Plate Welded in Aqueous Environment
Authors: Yahaya Taiwo, Adedayo M. Segun
Abstract:
This study investigated the effect of postweld soaking temperature on mechanical properties of AISI 1018 steel plate welded in aqueous environment. Pairs of 90 x 70 x 12 mm, AISI 1018 steel plates were welded with weld zone beyond distance 10 mm from weld centerline immersed in a water jacket at 25°C. The welded specimens were tempered at temperature of 200, 300, 400, 500 and 600°C for 1.5 hours. Tensile, hardness and toughness tests at distances 15, 30, 45 and 60 mm from the weld centreline with micro structural evaluation were carried out. The results show that the aqueous environment as-weld sample exhibited higher hardness and tensile strength values of 45.3 HV and 448.12 N/mm2 respectively while the hardness and tensile strength of aqueous environment postweld heat treated samples were 44.9 HV and 378.98 N/mm2. This revealed 0.82% and 15.4% reduction in hardness and strength respectively. The metallographic tests showed that the postweld heat treated AISI 1018 steel micro structure contained tempered martensite with ferritic structure and precipitation of carbides. Postweld heat treatment produced materials of lower hardness and improved toughness.Keywords: air weld samples, aqueous environment weld samples, soaking temperature, water jacket
Procedia PDF Downloads 334781 Estimating Soil Erosion Using Universal Soil Loss Equation and Gis in Algash Basin
Authors: Issamaldin Mohammed, Ahmed Abdalla, Hatim Elobied
Abstract:
Soil erosion is globally known for adverse effects on social, environmental and economical aspects which directly or indirectly influence the human life. The area under study suffers from problems like water quality, river and agricultural canals bed rise due to high sediment load brought by Algash River from upstream (Eritrea high land), the current study utilized from remote sensing and Geographical Information System (GIS) to estimate the annual soil loss using Universal Soil Loss Equation (USLE). The USLE is widely used over the world which basically relies on rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), cover management factor (C) and support practice factor (P). The result of the study showed high soil loss in the study area, this result was illustrated in a form of map presenting the spatial distribution of soil loss amounts which classified into seven zones ranging from very slight zone (less than 2 ton/ha.year) to very severe (100-500 ton/ha.year), also the total soil loss from the whole study area was found to be 32,916,840.87 ton/ha.year. These kinds of results will help the experts of land management to give a priority for the severely affected zones to be tackled in an appropriate way.Keywords: Geographical Information System, remote sensing, sedimentation, soil loss
Procedia PDF Downloads 288780 Information and Communication Technologies-Based Urban Spaces: From Planning and Design to Implementation
Authors: Yountaik Leem, Kwang Woo Nam, Sang Ho Lee, Tae Heon Moon
Abstract:
As to the development of the capitalist economy, local governments put their focuses on economic growth and quality of life including the management of declined urban area. Together with the rapid advances in ICTs (information and communication technologies) Korean government tried to adapt ICTs to urban spaces to catch these two goals. Ubiquitous city, concept introduced by Mark Weiser in 1988, is a kind of ICTs based urban space which can provide IT services anytime and anywhere. This paper introduces the experience of developing ICTs-based urban planning and it’s implementation process and discusses the effect of the R&D based U-City test-bed project. For a community center of a residential zone in a newly developing city, spatial problems and citizen’s needs were identified to plan IT-based urban services. The paper also describes the structure and functions of Community O/S (COS) as an IT platform which controls data and urban devices such as media facades and U-poles. Not only one-way information but also Interactive services were included. Public creating activities using this platform also added –CO2 emission management and citizen making safety map, etc. The effects of the comprehensive U-City planning in S/W, H/W and human-ware were discussed on the case study of similar individual projects.Keywords: ICTs-based urban planning, implementation, public IT service, U-City
Procedia PDF Downloads 325779 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides
Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren
Abstract:
Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.Keywords: cemented carbide, functional gradient material, grain growth, sintering
Procedia PDF Downloads 93778 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation
Authors: A. El-S. Makled, M. K. Al-Tamimi
Abstract:
A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters
Procedia PDF Downloads 311777 High Acid-Stable α-Amylase Production by Milk in Liquid Culture
Authors: Shohei Matsuo, Saki Mikai, Hiroshi Morita
Abstract:
Objectives: Shochu is a popular Japanese distilled spirits. In the production of shochu, the filamentous fungus Aspergillus kawachii has traditionally been used. A. kawachii produces two types of starch hydrolytic enzymes, α-amylase (enzymatic liquefaction) and glucoamylase (enzymatic saccharification). Liquid culture system is a relatively easy microorganism to ferment with relatively low cost of production compared for solid culture. In liquid culture system, acid-unstable α-amylase (α-A) was produced abundantly, but, acid-stable α-amylase (Aα-A) was not produced. Since there is high enzyme productivity, most in shochu brewing have been adopted by a solid culture method. In this study, therefore, we investigated production of Aα-A in liquid culture system. Materials and methods: Microorganism Aspergillus kawachii NBRC 4308 was used. The mold was cultured at 30 °C for 7~14 d to allow formation of conidiospores on slant agar medium. Liquid Culture System: A. kawachii was cultured in a 100 ml of following altered SLS medium: 1.0 g of rice flour, 0.1 g of K2HPO4, 0.1 g of KCl, 0.6 g of tryptone, 0.05 g of MgSO4・7H2O, 0.001 g of FeSO4・7H2O, 0.0003 g of ZnSO4・7H2O, 0.021 g of CaCl2, 0.33 of citric acid (pH 3.0). The pH of the medium was adjusted to the designated value with 10 % HCl solution. The cultivation was shaking at 30 °C and 200 rpm for 72 h. It was filtered to obtain a crude enzyme solution. Aα-A assay: The crude enzyme solution was analyzed. An acid-stable α-amylase activity was carried out using an α-amylase assay kit (Kikkoman Corporation, Noda, Japan). It was conducted after adding 9 ml of 100 mM acetate buffer (pH 3.0) to 1 ml of the culture product supernatant and acid treatment at 37°C for 1 h. One unit of a-amylase activity was defined as the amount of enzyme that yielded 1 mmol of 2-chloro-4-nitrophenyl 6-azide-6-deoxy-b-maltopentaoside (CNP) per minute. Results and Conclusion: We experimented with co-culture of A. kawachii and lactobacillus in order to get control of pH in altered SLS medium. However, high production of acid-stable α-amylase was not obtained. We experimented with yoghurt or milk made an addition to liquid culture. The result indicated that high production of acid-stable α-amylase (964 U/g-substrate) was obtained when milk made an addition to liquid culture. Phosphate concentration in the liquid medium was a major cause of increased acid-stable α-amylase activity. In liquid culture, acid-stable α-amylase activity was enhanced by milk, but Fats and oils in the milk were oxidized. In addition, Tryptone is not approved as a food additive in Japan. Thus, alter SLS medium added to skim milk excepting for the fats and oils in the milk instead of tryptone. The result indicated that high production of acid-stable α-amylase was obtained with the same effect as milk.Keywords: acid-stable α-amylase, liquid culture, milk, shochu
Procedia PDF Downloads 284776 Iterative Dynamic Programming for 4D Flight Trajectory Optimization
Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho
Abstract:
4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization
Procedia PDF Downloads 162775 Vocational and Technical Educators’ Acceptance and Use of Digital Learning Environments Beyond Working Hours: Implications for Work-Life Balance and the Role of Integration Preference
Authors: Jacinta Ifeoma Obidile
Abstract:
Teachers (vocational and technical educators inclusive) use Information and Communications Technology (ICT) for tasks outside of their normal working hours. This expansion of work duties to non-work time challenges their work-life balance. However, there has been inconsistency in the results on how these relationships correlate. This, therefore, calls for further research studies to examine the moderating mechanisms of such relationships. The present study, therefore, ascertained how vocational and technical educators’ technology acceptance relates to their work-related ICT use beyond their working hours and work-life balance, as well as how their integration affects these relationships. The population of the study comprised 320 Vocational and Technical Educators from the Southeast geopolitical zone of Nigeria. Data were collected from the respondents using the structured questionnaire. The questionnaire was validated by three experts. The reliability of the study was conducted using 20 vocational and technical educators from the South who were not part of the population. The overall reliability coefficient of 0.81 was established using Cronbach’s alpha method. The data collected was analyzed using Structural equation modeling. Findings, among others, revealed that vocational and technical educators’ work-life balance was mediated by increased digital learning environment use after work hours, although reduced by social influence.Keywords: vocational and technical educators, digital learning environment, working hours, work-life balance, integration preference
Procedia PDF Downloads 67774 Mothwash Formulation of Moringa Leaf (Moringa Oleifera) and Its Activity as an Antibacterial for Streptococcus Mutans
Authors: Amalia Dwi Berliyanti Amel
Abstract:
Streptococcus mutants bacteria are bacteria that are believed to be the cause of the growth of dental plaque which can further adversely affect dental caries if left unchecked. Previous research has shown that Moringa leaf extract can slow down the growth rate of this bacterium. This study aims to make the best formulation of mouthwash with the active ingredient of Moringa leaf extract based on its antibacterial and organoleptic test results. Nine mouthwash variations were carried out with two factors and three levels, namely a comparison of the concentration of sorbitol (A) with three levels namely 15% (A1), 20% (A2), and 25% (A3), and peppermint added (B) with three levels, namely 0.2% (B1), 0.25% (B2), and 0.3% (B3). The test parameters performed as the determination of the best mouthwash are based on physicochemical properties which include pH and viscosity as well as organoleptic test results which include color, viscosity, aroma, taste, sensation in the mouth, and general appearance. The results showed that the bright zone as a test for the antibacterial activity of Streptococcus mutants began to be seen at a concentration of 5%. Moringa leaf mouthwash formulation has a pH value between 6 - 7, with a control of 6. Whereas the mucosa leaf mouthwash vascularity produced between 1.1 - 1.7 cP with a control of 1.1 cP. Moringa leaf mouthwash and control have the same total number of microbes, namely 0 colonies / mL. Based on organoleptic tests performed with 20 panelists, it was shown that the best mouthwash formulation was formulation A1B3 with sorbitol composition 15% and peppermint 0.3%.Keywords: antibasteria, formula, moringa leaf, mouthwash
Procedia PDF Downloads 155773 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix
Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan
Abstract:
The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.Keywords: biomaterials, biowaste recycling, materials processing, microwave processing
Procedia PDF Downloads 352772 Phytochemical Study and Antimicrobial Activity of Nigella sativa L. (Renunculaceae) in Algeria
Authors: L. Bendifallah, F. Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane
Abstract:
Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.Keywords: Nigella sativa, phytochemistry, antimicrobial activity, Algeria
Procedia PDF Downloads 324771 Phytochemical Study and Antimicrobial Activity of Nigella Sativa L. (Renunculaceae) in Algeria
Authors: L. Bendifallah, F.Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane
Abstract:
Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.Keywords: Algeria, antimicrobial activity, Nigella sativa, phytochemistry
Procedia PDF Downloads 564770 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia
Authors: Fathul Mubin, Budi E. Nurcahya
Abstract:
In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index
Procedia PDF Downloads 194769 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading
Authors: Hadi Rouhi Belvirdi
Abstract:
Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance
Procedia PDF Downloads 9768 Sustainable Urban Sewer Systems as Stormwater Management and Control Mechanisms
Authors: Ezequiel Garcia-Rodriguez, Lenin Hernandez-Ferreyra, Luis Ochoa-Franco
Abstract:
The Sustainable Sewer Urban Systems (SSUS) are mechanisms integrated into the cities for manage rain water, reducing its runoff volume and velocity, enhancing the rain water quality and preventing flooding and other catastrophes associated to the rain, as well as improving the energy efficiency. The objective of SSUS is to mimic or to equal the runoff and infiltration natural conditions of the land before its urbanization, reducing runoff that may cause troubles within the houses, as well as flooding. At the same time, energy for warming homes and for pumping and treating water is reduced, contributing to the reduction of CO₂ emissions and therefore contributing to reduce the climate change. This paper contains an evaluation of the advantages that SSUS may offer within a zone of Morelia City, Mexico, applying support tools for decision making. The hydrological conditions prior to and after the urbanization of the study area were analyzed to propose the recommended SSUS. Different types of SSUS were proposed in this case study, assessing their effect on the rainwater flow behavior within the study area. SSUS usage in this case resulted, positively, in an important reduction of the magnitude and velocity of runoff, reducing therefore the risk of flooding. So that, it is recommended the implementation of SSUS in this case.Keywords: energy efficiency, morelia, sustainablesewer, urban systems
Procedia PDF Downloads 63767 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel
Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das
Abstract:
Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization
Procedia PDF Downloads 163766 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.
Authors: O. Smara, H. Dendougui, B. Legseir
Abstract:
Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols
Procedia PDF Downloads 304765 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir
Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai
Abstract:
Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor
Procedia PDF Downloads 476764 Design Criteria for Achieving Acceptable Indoor Radon Concentration
Authors: T. Valdbjørn Rasmussen
Abstract:
Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.Keywords: radon, natural radiation, barrier, pressure lowering, ventilation
Procedia PDF Downloads 354763 Effect of Garlic Powder Extract on Fungi Isolated from Diseased Irish Potato in Bokkos, Plateau State Nigeria
Authors: Musa Filibus Gugu
Abstract:
An investigation was carried out on the effect of garlic powder extract on fungi associated with Irish potato rot in Bokkos, Plateau State, Nigeria. Diseased Irish potatoes were randomly collected from three markets in the study location and fungal species isolated. Isolated fungal species were Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans. Frequency of occurrence for Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans was 10%, 34%, and 56%, respectively, using sabauraud dextrose agar, after incubation for 4-7 days. Treatment of Pytophthora infestans with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 92%, 68%, 32% and 10% inhibition zones, respectively. Fusarium culmorum showed 100%, 90%, 40%, 9% and 0% inhibition zones when treated with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml, respectively. Garlic powder extract concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 98%, 55%, 30%, 0% inhibition zones, respectively on Fusarium oxysporum. Hence, Restriction of the radial growth of the fungal colonies suggests a good antifungal effect of garlic extract. This can be integrated into the treatment of fungal diseases of Irish potato in Bokkos, Nigeria, as this will help to reduce the indiscriminate use of fungicides, especially in an environment with a struggling economy.Keywords: fungal rot, garlic extract, inhibition zone, Irish potato
Procedia PDF Downloads 143