Search results for: automatic processing
3255 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 4353254 Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink
Authors: Wayan Widhiada, Cok Indra Partha, Gusti Ngurah Nitya Santhiarsa
Abstract:
The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly.Keywords: control analysis, kinematics motion, mobile robot manipulator, performance
Procedia PDF Downloads 4103253 Morphological Analysis of Manipuri Language: Wahei-Neinarol
Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh
Abstract:
Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF
Procedia PDF Downloads 3263252 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 1333251 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3893250 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran
Authors: M. Ahmadi, M. Kafil, H. Ebrahimi
Abstract:
Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform
Procedia PDF Downloads 1503249 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4883248 Modernization of Garri-Frying Technologies with Respect to Women Anthromophic Quality in Nigeria
Authors: Adegbite Bashiru Adeniyi, Olaniyi Akeem Olawale, Ayobamidele Sinatu Juliet
Abstract:
The study was carried out in the 6 South Western states of Nigeria to analyze socio-economic characteristic of garri processors and their anthropometric qualities with respect to modern technologies used in garri processing. About 20 respondents were randomly selected from each of the 6 workstations purposively considered for the study due to their daily processing activities already attracted high patronage of customers. These include Oguntolu village (Ogun State), Igoba-Akure (Ondo State), Imo-Ilesa (Osun State), Odo Oba-Ileri (Oyo State), Irasa village (Ekiti State) and Epe in Lagos state. Interview schedule was conducted for 120 respondents to elicit information. Data were analyzed using descriptive statistical tools. It was observed from the findings that respondents were in their most productive age range (36-45 years) except Ogun state where majority (45%) were relatively older than 45 years. A fewer processors were much younger than 26 years old. It furthers revealed that not less than 55% have body weight greater than 50.0 kilogram, also not less than 70% were taller than 1.5 meter. So also, the hand length and hand thickness of the majority were long and bulky which are considered suitable for operating some modern and improved technologies in garri-frying process. This information could be used by various technological developers to enhance production of modern equipment and tools for a greater efficiency.Keywords: agro-business, anthromorphic, modernization, proficiency
Procedia PDF Downloads 5123247 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering
Procedia PDF Downloads 2413246 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems
Procedia PDF Downloads 4703245 Drivers of Farmers' Contract Compliance Behaviour: Evidence from a Case Study of Dangote Tomato Processing Plant in Northern Nigeria.
Authors: Umar Shehu Umar
Abstract:
Contract farming is a viable strategy agribusinesses rely on to strengthen vertical coordination. However, low contract compliance remains a significant setback to agribusinesses' contract performance. The present study aims to understand what drives smallholder farmers’ contract compliance behaviour. Qualitative information was collected through Focus Group Discussions to enrich the design of the survey questionnaire administered on a sample of 300 randomly selected farmers contracted by the Dangote Tomato Processing Plant (DTPP) in four regions of northern Nigeria. Novel transaction level data of tomato sales covering one season were collected in addition to socio-economic information of the sampled farmers. Binary logistic model results revealed that open fresh market tomato prices and payment delays negatively affect farmers' compliance behaviour while quantity harvested, education level and input provision correlated positively with compliance. The study suggests that contract compliance will increase if contracting firms devise a reliable and timely payment plan (e.g., digital payment), continue input and service provisions (e.g., improved seeds, extension services) and incentives (e.g., loyalty rewards, bonuses) in the contract.Keywords: contract farming, compliance, farmers and processors., smallholder
Procedia PDF Downloads 563244 Tracking and Classifying Client Interactions with Personal Coaches
Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole
Abstract:
The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing
Procedia PDF Downloads 4333243 Evaluation of Different Cowpea Genotypes Using Grain Yield and Canning Quality Traits
Authors: Magdeline Pakeng Mohlala, R. L. Molatudi, M. A. Mofokeng
Abstract:
Cowpea (Vigna unguiculata (L.) Walp) is an important annual leguminous crop in semi-arid and tropics. Most of cowpea grain production in South Africa is mainly used for domestic consumption, as seed planting and little or none gets to be used in industrial processing; thus, there is a need to expand the utilization of cowpea through industrial processing. Agronomic traits contribute to the understanding of the association between yield and its component traits to facilitate effective selection for yield improvement. The aim of this study was to evaluate cowpea genotypes using grain yield and canning quality traits. The field experiment was conducted in two locations in Limpopo Province, namely Syferkuil Agricultural Experimental farm and Ga-Molepo village during 2017/2018 growing season and canning took place at ARC-Grain Crops Potchefstroom. The experiment comprised of 100 cowpea genotypes laid out in a Randomized Complete Block Designs (RCBD). The grain yield, yield components, and canning quality traits were analysed using Genstat software. About 62 genotypes were suitable for canning, 38 were not due to their seed coat texture, and water uptake was less than 80% resulting in too soft (mushy) seeds. Grain yield for RV115, 99k-494-6, ITOOK1263, RV111, RV353 and 53 other genotypes recorded high positive association with number of branches, pods per plant, and number of seeds per pod, unshelled weight and shelled weight for Syferkuil than at Ga-Molepo are therefore recommended for canning quality.Keywords: agronomic traits, canning quality, genotypes, yield
Procedia PDF Downloads 1523242 Restoration of Digital Design Using Row and Column Major Parsing Technique from the Old/Used Jacquard Punched Cards
Authors: R. Kumaravelu, S. Poornima, Sunil Kumar Kashyap
Abstract:
The optimized and digitalized restoration of the information from the old and used manual jacquard punched card in textile industry is referred to as Jacquard Punch Card (JPC) reader. In this paper, we present a novel design and development of photo electronics based system for reading old and used punched cards and storing its binary information for transforming them into an effective image file format. In our textile industry the jacquard punched cards holes diameters having the sizes of 3mm, 5mm and 5.5mm pitch. Before the adaptation of computing systems in the field of textile industry those punched cards were prepared manually without digital design source, but those punched cards are having rich woven designs. Now, the idea is to retrieve binary information from the jacquard punched cards and store them in digital (Non-Graphics) format before processing it. After processing the digital format (Non-Graphics) it is converted into an effective image file format through either by Row major or Column major parsing technique.To accomplish these activities, an embedded system based device and software integration is developed. As part of the test and trial activity the device was tested and installed for industrial service at Weavers Service Centre, Kanchipuram, Tamilnadu in India.Keywords: file system, SPI. UART, ARM controller, jacquard, punched card, photo LED, photo diode
Procedia PDF Downloads 1673241 Identification of Lipo-Alkaloids and Fatty Acids in Aconitum carmichaelii Using Liquid Chromatography–Mass Spectrometry and Gas Chromatography–Mass Spectrometry
Authors: Ying Liang, Na Li
Abstract:
Lipo-alkaloid is a kind of C19-norditerpenoid alkaloids existed in Aconitum species, which usually contains an aconitane skeleton and one or two fatty acid residues. The structures are very similar to that of diester-type alkaloids, which are considered as the main bioactive components in Aconitum carmichaelii. They have anti-inflammatory, anti-nociceptive, and anti-proliferative activities. So far, more than 200 lipo-alkaloids were reported from plants, semisynthesis, and biotransformations. In our research, by the combination of ultra-high performance liquid chromatography-quadruple-time of flight mass spectrometry (UHPLC-Q-TOF-MS) and an in-house database, 148 lipo-alkaloids were identified from A. carmichaelii, including 93 potential new compounds and 38 compounds with oxygenated fatty acid moieties. To our knowledge, this is the first time of the reporting of the oxygenated fatty acids as the side chains in naturally-occurring lipo-alkaloids. Considering the fatty acid residues in lipo-alkaloids should come from the free acids in the plant, the fatty acids and their relationship with lipo-alkaloids were further investigated by GC-MS and LC-MS. Among 17 fatty acids identified by GC-MS, 12 were detected as the side chains of lipo-alkaloids, which accounted for about 1/3 of total lipo-alkaloids, while these fatty acid residues were less than 1/4 of total fatty acid residues. And, total of 37 fatty acids were determined by UHPCL-Q-TOF-MS, including 18 oxidized fatty acids firstly identified from A. carmichaelii. These fatty acids were observed as the side chains of lipo-alkaloids. In addition, although over 140 lipo-alkaloids were identified, six lipo-alkaloids, 8-O-linoleoyl-14-benzoylmesaconine (1), 8-O-linoleoyl-14-benzoylaconine (2), 8-O-palmitoyl-14-benzoylmesaconine (3), 8-O-oleoyl-14-benzoylmesaconine (4), 8-O-pal-benzoylaconine (5), and 8-O-ole-Benzoylaconine (6), were found to be the main components, which accounted for over 90% content of total lipo-alkaloids. Therefore, using these six components as standards, a UHPLC-Triple Quadrupole-MS (UHPLC-QQQ-MS) approach was established to investigate the influence of processing on the contents of lipo-alkaloids. Although it was commonly supposed that the contents of lipo-alkaloids increased after processing, our research showed that no significant change was observed before and after processing. Using the same methods, the lipo-alkaloids in the lateral roots of A. carmichaelii and the roots of A. kusnezoffii were determined and quantified. The contents of lipo-alkaloids in A. kusnezoffii were close to that of the parent roots of A. carmichaelii, while the lateral roots had less lipo-alkaloids than the parent roots. This work was supported by Macao Science and Technology Development Fund (086/2013/A3 and 003/2016/A1).Keywords: Aconitum carmichaelii, fatty acids, GC-MS, LC-MS, lipo-alkaloids
Procedia PDF Downloads 2993240 Rapid Design Approach for Electric Long-Range Drones
Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert
Abstract:
The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.Keywords: aerofoil, drones, rapid prototyping, powertrain
Procedia PDF Downloads 713239 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1883238 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals
Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge
Abstract:
It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.Keywords: blockchain, deep learning, NLP, monitoring system
Procedia PDF Downloads 1333237 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1613236 Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework
Authors: Namhun Lee, Seong Jin Kim
Abstract:
The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety.Keywords: construction safety, occupational stress, stress monitoring, wearable biosensors
Procedia PDF Downloads 1613235 Learner's Difficulties Acquiring English: The Case of Native Speakers of Rio de La Plata Spanish Towards Justifying the Need for Corpora
Authors: Maria Zinnia Bardas Hoffmann
Abstract:
Contrastive Analysis (CA) is the systematic comparison between two languages. It stems from the notion that errors are caused by interference of the L1 system in the acquisition process of an L2. CA represents a useful tool to understand the nature of learning and acquisition. Also, this particular method promises a path to un-derstand the nature of underlying cognitive processes, even when other factors such as intrinsic motivation and teaching strategies were found to best explain student’s problems in acquisition. CA study is justified not only from the need to get a deeper understanding of the nature of SLA, but as an invaluable source to provide clues, at a cognitive level, for those general processes involved in rule formation and abstract thought. It is relevant for cross disciplinary studies and the fields of Computational Thought, Natural Language processing, Applied Linguistics, Cognitive Linguistics and Math Theory. That being said, this paper intends to address here as well its own set of constraints and limitations. Finally, this paper: (a) aims at identifying some of the difficulties students may find in their learning process due to the nature of their specific variety of L1, Rio de la Plata Spanish (RPS), (b) represents an attempt to discuss the necessity for specific models to approach CA.Keywords: second language acquisition, applied linguistics, contrastive analysis, applied contrastive analysis English language department, meta-linguistic rules, cross-linguistics studies, computational thought, natural language processing
Procedia PDF Downloads 1503234 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5003233 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 833232 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations
Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos
Abstract:
Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest
Procedia PDF Downloads 1773231 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3713230 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 853229 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms
Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu
Abstract:
Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.Keywords: mammography, glandularity, gray value, BI-RADS
Procedia PDF Downloads 4923228 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1
Authors: Fezzani Boubaker
Abstract:
The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software
Procedia PDF Downloads 3433227 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 4113226 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 386