Search results for: Deep learning based segmentation
32063 Thermal and Radon-222 Appraisal in Geothermal Aquifer System, Southeastern Tunisia
Authors: Agoubi Belgacem, Adel Kharroubi
Abstract:
Geothermal groundwater is the main water source to supply various sectors in El Hamma city, southeastern Tunisia. This region was long the destination of thousands of people from Tunisia and neighboring countries for care and bathing. The main objective of this study is to understand the groundwater mineralization origins and factors that control. The second goal is the appraisal of radon in geothermal groundwater in the study area. For this aim, geothermal groundwater was sampled and collected from different locations (thermal baths and deep wells). Physical parameters were measured and major ions were analyzed. Results reveal three water types. The water first type has Na-Mg-Ca-SO4-Cl facies and T>55°C. The second water type dominated by Na-Ca-Cl-SO4 facies with a temperature < 45 °C. However the third water type is dominated by Ca-SO4-Na-Cl-Mg. The three water types may be controlled by depth and geology. The first represent groundwater from deep aquifer (lower cretaceous), the second type was the shallow aquifer and the first is mixed water from deep and shallow water with a temperature ranging from 45 to 55°C. Measured Radon shows that shallow aquifer has a higher 222Rn concentration (677 to 2903 Bq.m-3) than deep water (203 to 1100 Bq.m-3). R-222 in El Hamma thermal aquifer was controlled by structures, porosity and permeability of aquifers. Geostatistical analyses of hydrogeological data and radon activities confirm the vertical flow and communication between deep and shallow aquifers through vertical faults system.Keywords: Radon-222, geothermal, water, environment, Tunisia
Procedia PDF Downloads 36232062 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 37632061 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 17532060 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 13032059 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 6332058 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 15632057 The Holistic Nursing WebQuest: An Interactive Teaching/Learning Strategy
Authors: Laura M. Schwarz
Abstract:
WebQuests are an internet-based interactive teaching/learning tool and utilize a scaffolded methodology. WebQuests employ critical thinking, afford inquiry-based constructivist learning, and readily employ Bloom’s Taxonomy. WebQuests have generally been used as instructional technology tools in primary and secondary education and have more recently grown in popularity in higher education. The study of the efficacy of WebQuests as an instructional approach to learning, however, has been limited, particularly in the nursing education arena. The purpose of this mixed-methods study was to determine nursing students’ perceptions of the effectiveness of the Nursing WebQuest as a teaching/learning strategy for holistic nursing-related content. Quantitative findings (N=42) suggested that learners were active participants, used reflection, thought of new ideas, used analysis skills, discovered something new, and assessed the worth of something while taking part in the WebQuests. Qualitative findings indicated that participants found WebQuest positives as easy to understand and navigate; clear and organized; interactive; good alternative learning format, and used a variety of quality resources. Participants saw drawbacks as requiring additional time and work; and occasional failed link or link causing them to lose their location in the WebQuest. Recommendations include using larger sample size and more diverse populations from various programs and universities. In conclusion, WebQuests were found to be an effective teaching/learning tool as positively assessed by study participants.Keywords: holistic nursing, nursing education, teaching/learning strategy, WebQuests
Procedia PDF Downloads 12632056 Flipped Classroom in Bioethics Education: A Blended and Interactive Online Learning Courseware That Enhances Active Learning and Student Engagement
Authors: Molly Pui Man Wong
Abstract:
In this study, a blended and interactive e-learning Courseware that our team developed will be introduced, and our team’s experiences on how the e-learning Courseware and the flipped classroom benefit student learning in bioethics in the medical program will be shared. This study is a continuation of the previously established study, which provides a summary of the well-developed e-learning Courseware in a blended learning approach and an update on its efficiency and efficacy. First, a collection of animated videos capturing selected topics of bioethics and related ethical issues and dilemma will be introduced. Next, a selection of problem-based learning videos (“simulated doctor-patient role play”) with pop-up questions and discussions will be further discussed. Our recent findings demonstrated that these activities launched by the Courseware strongly engaged students in bioethics education and enhanced students’ critical thinking and creativity, which were consistent with the previous data in the preliminary studies. Moreover, the educational benefits of the online art exhibition, art jamming, and competition will be discussed, through which students could express bioethics through arts and enrich their learning in medical research in an interactive, fun, and entertaining way, strengthening their interests in bioethics. Furthermore, online survey questionnaires and focus group interviews were conducted. Consistent with the preliminary studies, our results indicated that implementing the e-learning Courseware with a flipped classroom in bioethics education enhanced both active learning and student engagement. In conclusion, our Courseware not only reinforces education in art, bioethics, and medicine but also benefits students in understanding and critical thinking in socio-ethical issues and serves as a valuable learning tool in bioethics teaching and learning.Keywords: bioethics, courseware, e-learning, flipped classroom
Procedia PDF Downloads 12732055 Cross-Cultural Competence Development through 'Learning by Reflection': A Case Study of Chinese International Students Learning through Taking Part-Time Jobs in the UK
Authors: Xin Zhao
Abstract:
The project aims to expand the notion of narrative learning and address the importance of learning by reflection in our learning and teaching context at a British university. Drawing on the key concepts such as development ZPD, transition and reflection-in and –on-action, this project analyses the learning experiences of a small sample of Chinese postgraduate students in a British University, who use part-time job experience to develop cross-cultural communication skills. The project adopts a mixed methods approach. Questionnaires and focus group interviews are used to examine the way in which students adapt (or not adapt) to the culture of learning in a British university and develop a renewed sense of self in transitions from one culture to the other. The project also looks at how the students appropriate opportunities for learning not just from classrooms but outside classrooms from everyday encounters. The project aims to address the implication of learning by reflection as development in transition. Time in and for learning, or duration, is taken for granted in theorising narrative learning. The project shall explore this very issue of time in relation to learning by reflection in considering time in/of/for learning as duration.Keywords: cross-cultural competence, learning by refection, international student transition, part-time work experience
Procedia PDF Downloads 18632054 Promoting Teaching and Learning Structures Based on Innovation and Entrepreneurship in Valahia University of Targoviste
Authors: Gabriela Teodorescu, Ioana Daniela Dulama
Abstract:
In an ever-changing society, the education system needs to constantly evolve to meet market demands. During its 30 years of existence, Valahia University of Targoviste (VUT) tried to offer its students a series of teaching-learning schemes that would prepare them for a remarkable career. In VUT, the achievement of performance through innovation can be analyzed by reference to several key indicators (i.e., university climate, university resources, and innovative methods applied to classes), but it is possible to differentiate between activities in the classic format: participate to courses; interactive seminars and tutorials; laboratories, workshops, project-based learning; entrepreneurial activities, through simulated enterprises; mentoring activities. Thus, VUT has implemented over time a series of schemes and projects based on innovation and entrepreneurship, and in this paper, some of them will be briefly presented. All these schemes were implemented by facilitating an effective dialog with students and the opportunity to listen to their views at all levels of the University and in all fields of study, as well as by developing a partnership with students to set out priority areas. VUT demonstrates innovation and entrepreneurial capacity through its new activities for higher education, which will attract more partnerships and projects dedicated to students.Keywords: Romania, project-based learning, entrepreneurial activities, simulated enterprises
Procedia PDF Downloads 16332053 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 15332052 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 5732051 Teaching the Student Agenda: A Case Study of Using Film Production in Students' English Learning
Authors: Ali Zefeiti
Abstract:
There has always been a debate on critical versus pragmatic approach to learning English. Different elements of teaching take different shapes in the two approaches. This study concerns itself with the students who are the main pillar of the teaching/learning operation. Students have always been placed into classrooms to learn what the curricula of different courses offer. There is little room for students to state their own learning needs as they often have to conform with the group requirement. This study focuses on an extra-curricular activity students did alongside their mainstream learning. The students come from different colleges and different EAP courses. They are united by their passion for the task and learning many things along the way. The data are collected through interviews and students' journals. The study was concerned with the effect of this extra-curricular activity on students' main learning trajectory. The students were engaged in the task of film production over the period of their English Language course. The findings show that students are able to set their own agenda for learning and have actually had a lot of skills and vocabulary to take to class.Keywords: critical EAP, pragmatic EAP, self-directed learning, teaching methods
Procedia PDF Downloads 45732050 Challenges of Online Education and Emerging E-Learning Technologies in Nigerian Tertiary Institutions Using Adeyemi College of Education as a Case Study
Authors: Oluwatofunmi Otobo
Abstract:
This paper presents a review of the challenges of e-learning and e-learning technologies in tertiary institutions. This review is based on the researchers observations of the challenges of making use of ICT for learning in Nigeria using Adeyemi College of Education as a case study; this is in comparison to tertiary institutions in the UK, US and other more developed countries. In Nigeria and probably Africa as a whole, power is the major challenge. Its inconsistency and fluctuations pose the greatest challenge to making use of online education inside and outside the classroom. Internet and its supporting infrastructures in many places in Nigeria are slow and unreliable. This, in turn, could frustrate any attempt at making use of online education and e-learning technologies. Lack of basic knowledge of computer, its technologies and facilities could also prove to be a challenge as many young people up until now are yet to be computer literate. Personal interest on both the parts of lecturers and students is also a challenge. Many people are not interested in learning how to make use of technologies. This makes them resistant to changing from the ancient methods of doing things. These and others were reviewed by this paper, suggestions, and recommendations were proffered.Keywords: education, e-learning, Nigeria, tertiary institutions
Procedia PDF Downloads 20232049 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 17832048 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 4032047 Literature Review of Instructor Perceptions of the Blended Learning Approach
Authors: Syed Ahmed Hasnain
Abstract:
Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.Keywords: blended learning, education, literature review, instructor perceptions
Procedia PDF Downloads 10532046 Overcoming Challenges of Teaching English as a Foreign Language in Technical Classrooms: A Case Study at TVTC College of Technology
Authors: Sreekanth Reddy Ballarapu
Abstract:
The perception of the whole process of teaching and learning is undergoing a drastic and radical change. More and more student-centered, pragmatic, and flexible approaches are gradually replacing teacher-centered lecturing and structural-syllabus instruction. The issue of teaching English as a Foreign language is no exception in this regard. The traditional Present-Practice-Produce (P-P-P) method of teaching English is overtaken by Task-Based Teaching which is a subsidiary branch of Communicative Language Teaching. At this juncture this article strongly tries to convey that - Task-based learning, has an advantage over other traditional methods of teaching. All teachers of English must try to customize their texts into productive tasks, apply them, and evaluate the students as well as themselves. Task Based Learning is a double edged tool which can enhance the performance of both the teacher and the taught. The sample for this case study is a class of 35 students from Semester III - Network branch at TVTC College of Technology, Adhum - Kingdom of Saudi Arabia. The students are high school passed out and aged between 19-21years.For the present study the prescribed textbook Technical English 1 by David Bonamy was used and a number of language tasks were chalked out during the pre- task stage and the learners were made to participate voluntarily and actively. The Action Research methodology was adopted within the dual framework of Communicative Language Teaching and Task-Based Learning. The different tools such as questionnaires, feedback and interviews were used to collect data. This study provides information about various techniques of Communicative Language Teaching and Task Based Learning and focuses primarily on the advantages of using a Task Based Learning approach. This article presents in detail the objectives of the study, the planning and implementation of the action research, the challenges encountered during the execution of the plan, and the pedagogical outcome of this project. These research findings serve two purposes: first, it evaluates the effectiveness of Task Based Learning and, second, it empowers the teacher's professionalism in designing and implementing the tasks. In the end, the possibility of scope for further research is presented in brief.Keywords: action research, communicative language teaching, task based learning, perception
Procedia PDF Downloads 24032045 Assessment of Frying Material by Deep-Fat Frying Method
Authors: Brinda Sharma, Saakshi S. Sarpotdar
Abstract:
Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying
Procedia PDF Downloads 43032044 Learning Object Repositories as Developmental Resources for Educational Institutions in the 21st Century
Authors: Hanan A. Algamdi, Huda Y. Alyami
Abstract:
Learning object repositories contribute to developing educational process through its advantages; as they employ technology effectively, and use it to create new resources for effective learning, as well as they provide opportunities for collaboration in content through providing the ability for editing, modifying and developing it. This supports the relationships between communities that benefit from these repositories, and reflects positively on the content quality. Therefore, this study aims at exploring the most prominent learning topics in the 21st century, which should be included in learning object repositories, and identifying the necessary set of learning skills that the repositories should develop among today students. For conducting this study, the analytical descriptive method will be employed, and study sample will include a group of leaders, experts, and specialists in curricula and e-learning at ministry of education in Kingdom of Saudi Arabia.Keywords: learning object, repositories, 21st century, quality
Procedia PDF Downloads 30632043 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective
Authors: Deonie Botha
Abstract:
Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.Keywords: digitalization, training, fourth industrial revolution, big data
Procedia PDF Downloads 15632042 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.Keywords: e-learning, physiological index, physiological signal, state of learning
Procedia PDF Downloads 38032041 Remote Training with Self-Assessment in Electrical Engineering
Authors: Zoja Raud, Valery Vodovozov
Abstract:
The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.Keywords: advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment
Procedia PDF Downloads 32932040 ICTs Knowledge as a Way of Enhancing Literacy and Lifelong Learning in Nigeria
Authors: Jame O. Ezema, Odenigbo Veronica
Abstract:
The study covers the topic Information Communication and Technology (ICTs) knowledge as a way of enhancing Literacy and Lifelong learning in Nigeria. This work delved into defining of ICTs. Types of ICTs and media technologies were also mentioned. It further explained how ICTs can be strengthened and the uses of ICTs in education was duly emphasized. The paper also enumerated some side effects of ICTs on learners while the role of ICTs in enhancing literacy was explained. The study carried out strategies to use ICTs meaningfully in Literacy Programs and also emphasized the word lifelong learning in Nigeria. Some recommendations were made towards acquiring ICTs knowledge, so as to enhance Literacy and Lifelong learning in Nigeria.Keywords: literacy, distance-learning, life-long learning for sustainable development, e-learning
Procedia PDF Downloads 50732039 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 4132038 A Development of Personalized Edutainment Contents through Storytelling
Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim
Abstract:
Recently, ‘play of learning’ became important and is emphasized as a useful learning tool. Therefore, interest in edutainment contents is growing. Storytelling is considered first as a method that improves the transmission of information and learner's interest when planning edutainment contents. In this study, we designed edutainment contents in the form of an adventure game that applies the storytelling method. This content provides questions and items constituted dynamically and reorganized learning contents through analysis of test results. It allows learners to solve various questions through effective iterative learning. As a result, the learners can reach mastery learning.Keywords: storytelling, edutainment, mastery learning, computer operating principle
Procedia PDF Downloads 31932037 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries
Authors: Shafaq Rubab
Abstract:
One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.Keywords: digital game-based learning, student’s motivation, instructional design model, learning process
Procedia PDF Downloads 43332036 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 14832035 Chronicling the Debates Around the Use of English as a Language of Learning and Teaching in Schools
Authors: Manthekeleng Linake, Fesi Liziwe
Abstract:
The ongoing argument over the use of English as a learning and teaching language in schools was examined in this study. The nature of the language proficiency gap is particularly relevant in light of the present emphasis on learning and educational quality in contemporary debates, as well as the education sustainable development goal. As a result, an interpretivist paradigm, a qualitative technique, and a case study-based research design were used in the work. Two school principals, two teachers, two members of the School Governing Body (SGB), and four learners were chosen using purposive sampling from two schools in the Amathole West Education District. The researchers were able to acquire in-depth information on the disputes surrounding the use of English as a language of learning and teaching by using semi-structured interview questions and focus groups. Despite knowing that they do not have the potential to do well in English, teachers found that despite appreciating the value of mother tongue and cultural identity, they prefer to use English as the language of teaching in schools. The findings, on the other hand, revealed that proponents of mother-language-based education argue that learning one's mother tongue is a human right.Keywords: English first additional language learners, social justice, human capabilities, language proficiency
Procedia PDF Downloads 14232034 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms
Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin
Abstract:
This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.Keywords: machine learning, business models, convex analysis, online learning
Procedia PDF Downloads 142