Search results for: virus-like particle
1574 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region
Authors: Pratibha, Jyoti Kori
Abstract:
Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor
Procedia PDF Downloads 1851573 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh
Abstract:
The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength
Procedia PDF Downloads 611572 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation
Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo
Abstract:
Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,
Procedia PDF Downloads 3351571 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size
Authors: Carola Cappa
Abstract:
Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba
Procedia PDF Downloads 721570 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method
Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke
Abstract:
Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann
Procedia PDF Downloads 631569 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4
Procedia PDF Downloads 4601568 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag
Authors: Jiaxu Huang
Abstract:
The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC
Procedia PDF Downloads 1351567 Synthesis and Characterization of Novel Hollow Silica Particle through DODAB Vesicle Templating
Authors: Eun Ju Park, Wendy Rusli, He Tao, Alexander M. Van Herk, Sanggu Kim
Abstract:
Hollow micro-/nano- structured materials have proven to be promising in wide range of applications, such as catalysis, drug delivery and controlled release, biotechnology, and personal and consumer care. Hollow sphere structures can be obtained through various templating approaches; colloid templates, emulsion templates, multi-surfactant templates, and single crystal templates. Vesicles are generally the self-directed assemblies of amphiphilic molecules including cationic, anionic, and cationic surfactants in aqueous solutions. The directed silica capsule formations were performed at the surface of dioctadecyldimethylammoniumbromide(DODAB) bilayer vesicles as soft template. The size of DODAB bilayer vesicles could be tuned by extrusion of a preheated dispersion of DODAB. The synthesized hollow silica particles were characterized by conventional TEM, cryo-TEM and SEM to determine the morphology and structure of particles and dynamic light scattering (DLS) method to measure the particle size and particle size distribution.Keywords: characterization, DODAB, hollow silica particle, synthesis, vesicle
Procedia PDF Downloads 3071566 Nanoparticle Emission Characteristics during Methane Pyrolysis in a Laminar Premixed Flame
Authors: Mohammad Javad Afroughi, Farjad Falahati, Larry W. Kostiuk, Jason S. Olfert
Abstract:
This study investigates the physical characteristics of nanoparticles generated during pyrolysis of methane in hot products of a premixed propane-air flame. An inverted burner is designed to provide a laminar premixed propane-air flame (35 SLPM) then introduce methane co-flow to be pyrolyzed within a closed cylindrical chamber (20 cm in diameter and 68 cm in length). The formed products are discharged through an exhaust with a sampling branch to measure emission characteristics. Carbon particles are sampled with a preheated nitrogen dilution system, and the size distribution of particles formed by pyrolysis is measured by a scanning mobility particle sizer (SMPS). Dilution ratio is calculated using simultaneously measured CO2 concentrations in the exhaust products and diluted samples. Results show that particle size distribution (PSD) is strongly affected by dilution ratio and preheating temperature. PSD becomes unstable at high dilution ratios (typically above 700 times) and/or low preheating temperatures (below 40° C). At a suitable dilution ratio of 55 and preheating temperature up to 70° C, the median diameter of PSD increases from 20 to 220 nm following the introduction of 0.5 SLPM of methane to the propane-air premixed flame. Furthermore, with pyrolysis of methane, total particle number concentration and estimated total mass concentration of particles in the size range of 14 to 700 nm, increase from 1.12 to 3.90 *107 cm-3 and from 0.11 to 154 µg L-1, respectively.Keywords: laminar premixed flame, methane pyrolysis, nanoparticle physical characteristics, particle mass concentration, particle number concentration, particle size distribution (PSD)
Procedia PDF Downloads 2381565 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers
Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall
Abstract:
Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.Keywords: active matter, colloids, ferromagnetic, annealing
Procedia PDF Downloads 1101564 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model
Authors: Tory Erickson
Abstract:
The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics
Procedia PDF Downloads 861563 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 1571562 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 1311561 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure
Authors: Anika Zafiah M. Rus, S. Shafizah
Abstract:
This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood
Procedia PDF Downloads 4651560 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus
Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li
Abstract:
To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.Keywords: CDPF, diesel, natural gas, real-world emissions
Procedia PDF Downloads 2971559 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics
Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah
Abstract:
Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics
Procedia PDF Downloads 1301558 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device
Authors: Xin Shi, Wei Tan, Guorui Zhu
Abstract:
The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.Keywords: microfluidic, inertial focusing, particle separation, Dean flow
Procedia PDF Downloads 791557 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery
Authors: Harika Dasari, Eric Eisenbraun
Abstract:
The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.Keywords: particle size, NMC, silicon, heat generation, separator
Procedia PDF Downloads 2891556 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields
Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek
Abstract:
Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity
Procedia PDF Downloads 2651555 Flow Visualization in Biological Complex Geometries for Personalized Medicine
Authors: Carlos Escobar-del Pozo, César Ahumada-Monroy, Azael García-Rebolledo, Alberto Brambila-Solórzano, Gregorio Martínez-Sánchez, Luis Ortiz-Rincón
Abstract:
Numerical simulations of flow in complex biological structures have gained considerable attention in the last years. However, the major issue is the validation of the results. The present work shows a Particle Image Velocimetry PIV flow visualization technique in complex biological structures, particularly in intracranial aneurysms. A methodology to reconstruct and generate a transparent model has been developed, as well as visualization and particle tracking techniques. The generated transparent models allow visualizing the flow patterns with a regular camera using the visualization techniques. The final goal is to use visualization as a tool to provide more information on the treatment and surgery decisions in aneurysms.Keywords: aneurysms, PIV, flow visualization, particle tracking
Procedia PDF Downloads 901554 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm
Authors: Hooman Torabifard
Abstract:
In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.Keywords: image summarization, particle swarm optimization, image threshold, image processing
Procedia PDF Downloads 1331553 Effects of Particle Sizes of Maize Flour on the Quality of Traditional Maize Snack, Kokoro
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
The effects of particle sizes of maize flour on the quality of traditional maize snack (Kokoro) were investigated. Maize flour of different sieve mesh sizes of 1.00mm, 1.9 mm, 1.4 mm, 1.68 mm and 2.0 mm was used to produce Kokoro. The samples were analysed for protein, fat, moisture content, crude fibre, ash and sensory evaluation. The various mixture obtained were separately processed into snacks following essential traditional method of production. The result of the sensory evaluation showed that Kokoro of sample 546 using 1.0mm mesh sieve size was the most preferred and sample 513 using 2.00 was least preferred. The result revealed that the more the maize was well blended the more acceptable the product is to the consumer.Keywords: particle sizes, maize flour, quality, Kokoro
Procedia PDF Downloads 1971552 PD Test in Gas Insulated Substation Using UHF Method
Authors: T. Prabakaran
Abstract:
Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance.Keywords: gas insulated substation, partial discharge, free moving particle defect, particle fixed on cone defect, ultra high frequency method
Procedia PDF Downloads 2461551 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System
Authors: Juzhong Tan, William Kerr
Abstract:
Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.Keywords: cocoa bean, conching, electronic nose, genetic programming
Procedia PDF Downloads 2551550 A Model of Foam Density Prediction for Expanded Perlite Composites
Authors: M. Arifuzzaman, H. S. Kim
Abstract:
Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate
Procedia PDF Downloads 4081549 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel
Authors: A. Jourani, C. Trevisiol, S. Bouvier
Abstract:
The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.Keywords: martensite, microstructure, friction, wear, surface roughness
Procedia PDF Downloads 1581548 Extending Early High Energy Physics Studies with a Tri-Preon Model
Authors: Peter J. Riley
Abstract:
Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.Keywords: HEP, particle physics, standard model, Tri-Preon model
Procedia PDF Downloads 731547 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration
Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich
Abstract:
Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm
Procedia PDF Downloads 4301546 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method
Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya
Abstract:
This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.Keywords: particle size reduction, micromixer, FDM modelling, wet etching
Procedia PDF Downloads 4311545 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model
Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa
Abstract:
Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model
Procedia PDF Downloads 52