Search results for: unsaturated polyester resin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 641

Search results for: unsaturated polyester resin

551 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples

Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee

Abstract:

This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.

Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system

Procedia PDF Downloads 36
550 Spectroscopy Study of Jatropha curcas Seed Oil for Pharmaceutical Applications

Authors: Bashar Mudhaffar Abdullah, Hasniza Zaman Huri, Nany Hairunisa

Abstract:

This study was carried out to determine the thermal properties and spectroscopy study of Malaysian Jatropha curcas seed oil. The J. curcas seed oil physicochemical properties such as free fatty acid (FFA %), acid value, saponification value, iodine value, unsaponifiable matter, and viscosity (cp) gave values of 1.89±0.10%, 3.76±0.07, 203.36±0.36 mg/g, 4.90±0.25, 1.76±0.03%, and 32, respectively. Gas chromatography (GC) was used to determine the fatty acids (FAs) composition. J. curcas seed oil is consisting of saturated FAs (19.55%) such as palmitic (13.19%), palmitoleic (0.40%), and stearic (6.36%) acids and unsaturated FAs (80.42%) such as oleic (43.32%) and linoleic (36.70%) acids. The thermal properties using differential scanning calorimetry (DSC) showed that crystallized TAG was observed at -6.79°C. The melting curves displayed three major exothermic regions of J. curcas seed oil, monounsaturated (lower-temperature peak) at -31.69°C, di-unsaturated (medium temperature peak) at -20.23°C and tri-unsaturated (higher temperature peak) at -12.72°C. The results of this study showed that the J. curcas seed oil is a plausible source of polyunsaturated fatty acid (PUFA) to be developed in the future for pharmaceutical applications.

Keywords: Jatropha curcas seed oil, thermal properties, crystallization, melting, spectroscopy

Procedia PDF Downloads 449
549 Crosslinking of Unsaturated Elastomers in Presence of Aromatic Chlorine-Containing Compounds

Authors: Shiraz M. Mammadov, Elvin M. Aliyev, Adil A. Garibov

Abstract:

The role of the disulfochloride benzene in unsaturated rubbers (SKIN, SKN-26) which is in the systems of SKIN+disulfochloride benzene and SKN-26+disulfochloride benzene was studied by the radiation exposure. By the usage of physical, chemical and spectral methods the changes in the molecular structure of the rubber were shown after irradiation by y-rays at 300 kGy. The outputs and the emergence of the crosslinking in the elastomers for each system depending on absorbed dose were defined. It is suggested that the mechanism of radiation occurs by the heterogeneous transformation of elastomers in the presence of disulfochloride benzene.

Keywords: acrylonitrile-butadiene rubber, crosslinking, polyfunctional monomers, radiation, sensitizier, vulcanization

Procedia PDF Downloads 420
548 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers

Authors: Masih Moore, Saeed Ziaei-Rad

Abstract:

In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.

Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior

Procedia PDF Downloads 224
547 Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods.

Keywords: coir fiber, polyester composites, low velocity impact, Charpy impact test, drop-weight impact test

Procedia PDF Downloads 431
546 Enhancing of Paraffin Wax Properties by Adding of Low Density Polyethylene (LDPE)

Authors: Siham Mezher Yousif, Intisar Yahiya Mohammed, Salma Nagem Mouhy

Abstract:

Low Density Polyethylene is a thermoplastic resin extracted from petroleum based, whereas the wax is an oily organic component that is contains of alkanes, ester, polyester, and hydroxyl ester. The purpose of this research is to find out the optimum conditions of the wax produced by inducing with LDPE. The experiments were carried out by mixing different percentages of wax and LDPE to produce different polymer/wax compositions, in which lower values of the penetration, thickness, and electrical conductivity are obtained with increasing of mixing ratio of LDPE/wax which showed results of 19 mm penetration, 692 micron thickness and 5.9 mA electrical conductivity for 90 wt % of LDPE/wax) maximum mixing ratio (. It’s found that the optimum results regarding penetration, enamel thickness, and electrical conductivity “according to the enamel hardness, insulation properties, and economic aspects” are 20 mm, 276 micron, and 6.2 mA respectively.

Keywords: paraffin wax, low density polyethylene, blending, mixing ratio, bleaching

Procedia PDF Downloads 85
545 Modelling Interactions between Saturated and Unsaturated Zones by Hydrus 1D, Plain of Kairouan, Central Tunisia

Authors: Mariem Saadi, Sabri Kanzari, Adel Zghibi

Abstract:

In semi-arid areas like the Kairouan region, the constant irrigation with saline water and the overuse of groundwater resources, soils and aquifers salinization has become an increasing concern. In this study, a methodology has been developed to evaluate the groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998-2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer in the unsaturated zone. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.

Keywords: Hydrus-1D, Kairouan, salinization, semi-arid region, solute transport, unsaturated zone

Procedia PDF Downloads 156
544 Flame Retardant Study of Methylol Melamine Phosphate-Treated Cotton Fibre

Authors: Nurudeen Afolami Ayeni, Kasali Bello

Abstract:

Methylolmelamine with increasing degree of methylol substitution and the phosphates derivatives were used to resinate cotton fabric (CF). The resination was carried out at different curing time and curing temperature. Generally, the results show a reduction in the flame propagation rate of the treated fabrics compared to the untreated cotton fabric (CF). While the flame retardancy of methylolmelamine-treated fibre could be attributed to the degree of crosslinking of fibre-resin network which promotes stability, the methylolmelamine phosphate-treated fabrics show better retardancy due to the intumescences action of the phosphate resin upon decomposition in the resin – fabric network.

Keywords: cotton fabric, flame retardant, methylolmelamine, crosslinking, resination

Procedia PDF Downloads 354
543 Improving the Dimensional Stability of Bamboo Woven Strand Board

Authors: Gulelat Gatew

Abstract:

Bamboo Woven Strand Board (WSB) products are manufactured from Ethiopia highland bamboo (Yushania alpina) as a multiple layer mat structure for enhanced mechanical performance. Hence, it shows similar mechanical properties as tropical hardwood products. WSB, therefore, constitutes a sustainable alternative to tropical hardwood products. The resin and wax ratio had a great influence on the determinants properties of the product quality such as internal bonding, water absorption, thickness swelling, bending and stiffness properties. Among these properties, because of the hygroscopic nature of the bamboo, thickness swelling and water absorption are important performances of WSB for using in construction and outdoor facilities. When WSB is exposed to water or moist environment, they tend to swell and absorb water in all directions. The degree of swelling and water absorption depends on the type of resin used, resin formulation, resin ratio, wax type and ratio. The objective of this research is investigating effects of phenol formaldehyde and wax on thickness swelling and water absorption behavior on bamboo WSB for construction and outdoor facilities. The experiments were conducted to measure the effects of wax and phenol-formaldehyde resin content on WSB thickness swelling and water absorption which leads to investigate its effect on dimension stability and mechanical properties. Both experiments were performed with 2–hour and 24-hour water immersion test and a significant set of data regarding the influence of such method parameters is also presented. The addition of up to 2% wax with 10% of phenol formaldehyde significantly reduced thickness swelling and water absorption of WSB which resulted in making it more hydrophobic and less susceptible to the influences of moisture in high humidity conditions compared to the panels without wax.

Keywords: woven strand board (WSB), water absorption, thickness swelling, phenol formaldehyde resin

Procedia PDF Downloads 183
542 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 351
541 Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin

Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska

Abstract:

Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties.

Keywords: CFRP, acrylic resin, organosilicon compounds, mechanical properties, electrical properties

Procedia PDF Downloads 102
540 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: epoxy resin, biocomposite, lime waste, properties

Procedia PDF Downloads 289
539 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria

Abstract:

Bio-composites derived from plant fiber and bio-derived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based. In this research, the green phenolic resin was used as a matrix and oil palm empty fruit bunch fiber (EFB) was used as filler. The matrix was synthesized from soda lignin, phenol and hydrochloric acid as a catalyst. The phenolic resin was synthesized via liquefaction and condensation to enhance the combination of phenol during the process. Later, the phenolic resin was mixed with EFB by using mechanical stirrer and was molded with hot press at 180 oC. In this research, the composites were prepared with EFB content of 5%, 10%, 15% and 20%. The samples that viewed under scanning electron microscopy (SEM) showed that the EFB filler remained embedded in the resin. From impact and hardness testing, samples 10% of EFB showed the optimum properties meanwhile sample 15% showed the optimum properties for flexural testing. Thermal stability of the composites was investigated using thermogravimetric (TGA) analysis and found that the weight loss and the activation energy (Ea) of the composites samples were decreased as the filler content increased.

Keywords: EFB, liquefaction, phenol formaldehyde, lignin

Procedia PDF Downloads 556
538 Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish

Authors: Priyanka Gupta, Nilanjana Bairagi, Deepti Gupta

Abstract:

New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections.

Keywords: antimicrobial finish, bacteria, infection control, silver, white coat

Procedia PDF Downloads 186
537 Mechanical Tests and Analyzes of Behaviors of High-Performance of Polyester Resins Reinforced With Unifilo Fiberglass

Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța

Abstract:

In the last years, composite materials are increasingly used in automotive, aeronautic, aerospace, construction applications. Composite materials have been used in aerospace in applications such as engine blades, brackets, interiors, nacelles, propellers/rotors, single aisle wings, wide body wings. The fields of use of composite materials have multiplied with the improvement of material properties, such as stability and adaptation to the environment, mechanical tests, wear resistance, moisture resistance, etc. The composite materials are classified concerning type of matrix materials, as metallic, polymeric and ceramic based composites and are grouped according to the reinforcement type as fibre, obtaining particulate and laminate composites. Production of a better material is made more likely by combining two or more materials with complementary properties. The best combination of strength and ductility may be accomplished in solids that consist of fibres embedded in a host material. Polyester is a suitable component for composite materials, as it adheres so readily to the particles, sheets, or fibres of the other components. The important properties of the reinforcing fibres are their high strength and high modulus of elasticity. For applications, as in automotive or in aeronautical domain, in which a high strength-to-weight ratio is important, non-metallic fibres such as fiberglass have a distinct advantage because of their low density. In general, the glass fibres content varied between 9 to 33% wt. in the composites. In this article, high-performance types of composite materials glass-epoxy and glass-polyester used in automotive domain will be analyzed, performing tensile and flexural tests and SEM analyzes.

Keywords: glass-polyester composite, glass fibre, traction and flexion tests, SEM analyzes

Procedia PDF Downloads 134
536 Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties

Authors: Amar Boukerrou, Ouerdia Belhadj, Dalila Hammiche, Jean Francois Gerard, Jannick Rumeau

Abstract:

The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites.

Keywords: alfa fiber, epoxy resin, alkali treatment, mechanical properties

Procedia PDF Downloads 77
535 Portuguese Pine Resin: The Economic and Activity Decline to a New Forestry and Biotechnology Approach

Authors: Carolina Nunes, Sónia Ribeiro, Hélio Faustinho, Hélia Sales, Rita Pontes, João Nunes

Abstract:

Pine resin activity in Portugal was one of the most important and major non-wood forestry, representing a strategic natural resource for Portuguese Bioeconomy and an important social activity for rural regions. Pine forests representing a stock of atmospheric carbon, contributing to greenhouse effect mitigation and social and environmental important services returns. They are important sources of numerous useful products, including not only wood and cellulose but also nonwood products used by the chemical, food, and pharmaceutical industries, as well as for biorefineries. Portuguese pine forest area decreases from 1 million hectares to 400 mil hectares in the last 20 years. Portugal, in 80´s decade, was one of the world´s TOP 3 producers, with a middle annual production of 140 mil tones.year-1. With the pressure of the social desertification, forest fires, phytosanitary problems (e.g. nematode of the pine wood) and the decrease of economic value and competitivity of the Portuguese forest, the actual middle annual production is less than 10 mil tones.year-1 (lesser 92%). This significant decrease representing an annual economic loss of approximately 130-140 million Euros. year⁻¹ for forest primary sector in Portugal. The Biopinus project design new forestry approach and strategic biotechnologies knowledge to increase the economic value of Pine resin in Portugal, with an impact on the growth of the economic value of Pine resin from 1,1 to 1,5 Euros/kg.

Keywords: pine resin, bioeconomy, economic value, biotecnology

Procedia PDF Downloads 46
534 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution

Authors: Jie Ren, Siyao Guo

Abstract:

Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.

Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid

Procedia PDF Downloads 94
533 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature

Procedia PDF Downloads 112
532 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: composite, epoxy, polyester, relining, sewage

Procedia PDF Downloads 308
531 Controlled Conductivity of Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrene Sulfonate) Composites with Polyester

Authors: Kazui Sasakii, Seira Mormune-Moriya, Hiroaki Tanahashi, Shigeji Kongaya

Abstract:

Poly (3.4-ethylenedioxythiophene) doped with poly (4-styrene sulfonate) (PEDOT: PSS) attracted a great deal of attention because of its unique characteristics of flexibility, optical properties, heat resistance and colloidal dispersion in water. It is well known that when high boiling solvents such as ethylene glycol or dimethyl sulfoxide are added as a secondary dopant to the micellar structure, PEDOT microcrystallizes and becomes highly conductive. In previous study bis(4-hydroxyphenyl) sulfone (BPS) was used as a secondary dopant for PEDOT:PSS and the enhancement of the conductivity was revealed. However, ductility is one of the serious issues which limited the application of PEDOT:PSS/BPS. So far, the composition with polymer binders has been conducted, however, polymer binders decrease the conductivity of the materials. In this study, PEDOT: PSS composites with polyester (PEs) were prepared by a simple aqueous process using PEs emulsion. The structural studies revealed that PEDOT:PSS and PEs were homogeneously distributed in the composites. It was found that the properties of PEDOT:PSS were remarkably enhanced by the incorporation of PEs. According to the tensile test, the ductility of PEDOT:PSS was remarkably improved. Interestingly, the conductivity of PEDOT:PSS/PEs composites was higher than that of neat PEDOT:PSS. For example, the conductivity increased by 8% at PEs content of 25 wt%. Since PEDOT:PSS were homogeneously dispersed on the surface of PEs particles, it was assumed that the conductive pathway was constructed by PEs particles in the nanocomposites. Therefore, a significant increase in conductivity was achieved.

Keywords: polymer composites, conductivity, PEDOT:PSS, polyester

Procedia PDF Downloads 89
530 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial

Procedia PDF Downloads 470
529 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic

Authors: Deog-Gyu Seo, Jin-Soo Ahn

Abstract:

Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).

Keywords: primer, resin cement, shear bond strength, zirconia

Procedia PDF Downloads 176
528 Polyampholytic Resins: Advances in Ion Exchanging Properties

Authors: N. P. G. N. Chandrasekara, R. M. Pashley

Abstract:

Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.

Keywords: capacity, ion exchange, polyampholytic resin, regeneration

Procedia PDF Downloads 353
527 Result of Fatty Acid Content in Meat of Selenge Breed Younger Cattle

Authors: Myagmarsuren Soronzonjav, N. Togtokhbayar, L. Davaahuu, B. Minjigdorj, Seong Gu Hwang

Abstract:

The number of natural or organic product consumers is increased in recent years and this healthy demand pushes to increase usage of healthy meat. At the same time, consumers pay more attention on the healthy fat, especially on unsaturated fatty acids. These long chain carbohydrates reduce heart diseases, improve memory and eye sight and activate the immune system. One of the important issues to be solved for our Mongolia’s food security is to provide healthy, fresh, widely available and cheap meat for the population. Thus, an importance of the Selenge breed meat production is increasing in order to supply the quality meat food security since the Selenge breed cattle are rapidly multiplied, beneficial in term of income, the same quality as Mongolian breed, and well digested for human body. We researched the lipid, unsaturated and saturated fatty acid contents of meat of Selenge breed younger cattle by their muscle types. Result of our research reveals that 11 saturated fatty acids are detected. For the content of palmitic acid among saturated fatty acids, 23.61% was in the sirloin meat, 24.01% was in the round and chuck meat, and 24.83% was in the short loin meat.

Keywords: chromatogram, gas chromatography, organic resolving, saturated and unsaturated fatty acids

Procedia PDF Downloads 242
526 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 501
525 Jute Based Biocomposites: The Future of Automobiles

Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag

Abstract:

Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.

Keywords: jute, automobile industry, biodegradability, chemical compatibilizer

Procedia PDF Downloads 434
524 Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction

Authors: Junnile Romero, Ilhwan Park, Vannie Joy Resabal, Carlito Tabelin, Richard Alorro, Leaniel Silva, Joshua Zoleta, Takunda Mandu, Kosei Aikawa, Mayumi Ito, Naoki Hiroyoshi

Abstract:

Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction.

Keywords: rare earth element, diglycolamide, characterization, extraction resin

Procedia PDF Downloads 83
523 Reduce the Fire Hazards of Epoxy Resin by a Zinc Stannate and Graphene Hybrids

Authors: Haibo Sheng, Yuan Hu

Abstract:

Spinel structure Zinc stannate (Zn2SnO4, ZS)/Graphene was successfully synthesized by a simple in situ hydrothermal route. Morphological study and structure analysis confirmed the homogenously loading of ZS on the graphene sheets. Then, the resulted ZS/graphene hybrids were incorporated into epoxy resin to form EP/ZS/graphene composites by a solvent dispersion method. Improved thermal stability was investigated by Thermogravimetric Analysis (TGA). Cone calorimeter result showed low peak heat release rate (PHRR). Toxical gases release during combustion was evaluated by a facile device organized in our lab. The results showed that the release of NOx, HCN decrease of about 55%. Also, TG-IR technology was used to investigate the gas release during the EP decomposition process. The CO release had decreased about 80%.The EP/G/ZS showed lowest hazards during combustion (including flame retardancy, thermal stability, lower toxical gases release and so on) than pure EP.

Keywords: fire hazards, zinc stannate, epoxy resin, toxical gas hazards

Procedia PDF Downloads 158
522 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 129