Search results for: text alignment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1729

Search results for: text alignment

1639 Method of Complex Estimation of Text Perusal and Indicators of Reading Quality in Different Types of Commercials

Authors: Victor N. Anisimov, Lyubov A. Boyko, Yazgul R. Almukhametova, Natalia V. Galkina, Alexander V. Latanov

Abstract:

Modern commercials presented on billboards, TV and on the Internet contain a lot of information about the product or service in text form. However, this information cannot always be perceived and understood by consumers. Typical sociological focus group studies often cannot reveal important features of the interpretation and understanding information that has been read in text messages. In addition, there is no reliable method to determine the degree of understanding of the information contained in a text. Only the fact of viewing a text does not mean that consumer has perceived and understood the meaning of this text. At the same time, the tools based on marketing analysis allow only to indirectly estimate the process of reading and understanding a text. Therefore, the aim of this work is to develop a valid method of recording objective indicators in real time for assessing the fact of reading and the degree of text comprehension. Psychophysiological parameters recorded during text reading can form the basis for this objective method. We studied the relationship between multimodal psychophysiological parameters and the process of text comprehension during reading using the method of correlation analysis. We used eye-tracking technology to record eye movements parameters to estimate visual attention, electroencephalography (EEG) to assess cognitive load and polygraphic indicators (skin-galvanic reaction, SGR) that reflect the emotional state of the respondent during text reading. We revealed reliable interrelations between perceiving the information and the dynamics of psychophysiological parameters during reading the text in commercials. Eye movement parameters reflected the difficulties arising in respondents during perceiving ambiguous parts of text. EEG dynamics in rate of alpha band were related with cumulative effect of cognitive load. SGR dynamics were related with emotional state of the respondent and with the meaning of text and type of commercial. EEG and polygraph parameters together also reflected the mental difficulties of respondents in understanding text and showed significant differences in cases of low and high text comprehension. We also revealed differences in psychophysiological parameters for different type of commercials (static vs. video, financial vs. cinema vs. pharmaceutics vs. mobile communication, etc.). Conclusions: Our methodology allows to perform multimodal evaluation of text perusal and the quality of text reading in commercials. In general, our results indicate the possibility of designing an integral model to estimate the comprehension of reading the commercial text in percent scale based on all noticed markers.

Keywords: reading, commercials, eye movements, EEG, polygraphic indicators

Procedia PDF Downloads 163
1638 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking

Authors: Zayar Phyo, Ei Chaw Htoon

Abstract:

In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.

Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel

Procedia PDF Downloads 147
1637 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 177
1636 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 193
1635 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 184
1634 The Correlation between Body Composition and Spinal Alignment in Healthy Young Adults

Authors: Ferruh Taspinar, Ismail Saracoglu, Emrah Afsar, Eda O. Okur, Gulce K. Seyyar, Gamze Kurt, Betul Taspinar

Abstract:

Although it is thought that abdominal adiposity is one of the risk factor for postural deviation, such as increased lumbar lordosis, the body mass index is not sufficient to indicate effects of abdominal adiposity on spinal alignment and postural changes. The aim of this study was to investigate the correlation with detailed body composition and spine alignment in healthy young adults. This cross-sectional study was conducted with sixty seven healthy volunteers (37 men and 30 women) whose ages ranged between 19 and 27 years. All participants’ sagittal spinal curvatures of lumbar and thoracic region were measured via Spinal mouse® (Idiag, Fehraltorf, Switzerland). Also, body composition analysis (whole body fat ratio, whole body muscle ratio, abdominal fat ratio, and trunk muscle ratio) estimation by means of bioelectrical impedance was evaluated via Tanita Bc 418 Ma Segmental Body Composition Analyser (Tanita, Japan). Pearson’s correlation was used to analysis among the variables. The mean lumbar lordosis and thoracic kyphosis angles were 21.02°±9.39, 41.50°±7.97, respectively. Statistically analysis showed a significant positive correlation between whole body fat ratio and lumbar lordosis angle (r=0.28, p=0.02). Similarly, there was a positive correlation between abdominal fat ratio and lumbar lordosis angle (r=0.27, p=0.03). The thoracic kyphosis angle showed also positive correlation with whole body fat ratio (r=0.33, p=0.00) and abdominal fat ratio (r=0.40, p=0.01). The whole body muscle ratio showed negative correlation between lumbar lordosis (r=-0.28, p=0.02) and thoracic kyphosis angles (r=-0.33, p=0.00), although there was no statistically correlation between trunk muscle ratio, lumbar and thoracic curvatures (p>0.05). The study demonstrated that an increase of fat ratio and decrease of muscle ratio in abdominal region or whole body shifts the spinal alignment which may adversely affect the spinal loading. Therefore, whole body composition should be taken into account in spine rehabilitation.

Keywords: body composition, lumbar lordosis, spinal alignment, thoracic kyphosis

Procedia PDF Downloads 384
1633 Learning Outcomes Alignment across Engineering Core Courses

Authors: A. Bouabid, B. Bielenberg, S. Ainane, N. Pasha

Abstract:

In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.

Keywords: curriculum alignment, horizontal and vertical progression, performance indicators, skill level

Procedia PDF Downloads 221
1632 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)

Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss

Abstract:

In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.

Keywords: recognition, handwriting, Arabic text, HMMs, embedded training

Procedia PDF Downloads 352
1631 Poetics of the Connecting ha’: A Textual Study in the Poetry of Al-Husari Al-Qayrawani

Authors: Mahmoud al-Ashiriy

Abstract:

This paper begins from the idea that the real history of literature is the history of its style. And since the rhyme –as known- is not merely the last letter, that have received a lot of analysis and investigation, but it is a collection of other values in addition to its different markings. This paper will explore the work of the connecting ha’ and its effectiveness in shaping the text of poetry, since it establishes vocal rhythms in addition to its role in indicating references through the pronoun, vertically through the poem through the sequence of its verses, also horizontally through what environs the one verse of sentences. If the scientific formation of prosody stopped at the possibilities and prohibitions; literary criticism and poetry studies should explore what is above the rule of aesthetic horizon of poetic effectiveness that varies from a text to another, a poet to another, a literary period to another, or from a poetic taste to another. Then the paper will explore this poetic essence in the texts of the famous Andalusian Poet Al-Husari Al-Qayrawani through his well-known Daliyya (a poem that its verses end with the letter D), and the role of the connecting ha’ in fulfilling its text and the accomplishment of its poetics, departing from this to the diwan (the big collection of poems) also as a higher text that surpasses the text/poem, and through what it represents of effectiveness the work of the phenomenon in accomplishing the poetics of the poem of Al-Husari Al-Qayrawani who is one of the pillars of Arabic poetics in Andalusia.

Keywords: Al-Husari Al-Qayrawni, poetics, rhyme, stylistics, science of the text

Procedia PDF Downloads 571
1630 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 433
1629 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 98
1628 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 149
1627 A Greedy Alignment Algorithm Supporting Medication Reconciliation

Authors: David Tresner-Kirsch

Abstract:

Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.

Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm

Procedia PDF Downloads 283
1626 Symmetric Key Encryption Algorithm Using Indian Traditional Musical Scale for Information Security

Authors: Aishwarya Talapuru, Sri Silpa Padmanabhuni, B. Jyoshna

Abstract:

Cryptography helps in preventing threats to information security by providing various algorithms. This study introduces a new symmetric key encryption algorithm for information security which is linked with the "raagas" which means Indian traditional scale and pattern of music notes. This algorithm takes the plain text as input and starts its encryption process. The algorithm then randomly selects a raaga from the list of raagas that is assumed to be present with both sender and the receiver. The plain text is associated with the thus selected raaga and an intermediate cipher-text is formed as the algorithm converts the plain text characters into other characters, depending upon the rules of the algorithm. This intermediate code or cipher text is arranged in various patterns in three different rounds of encryption performed. The total number of rounds in the algorithm is equal to the multiples of 3. To be more specific, the outcome or output of the sequence of first three rounds is again passed as the input to this sequence of rounds recursively, till the total number of rounds of encryption is performed. The raaga selected by the algorithm and the number of rounds performed will be specified at an arbitrary location in the key, in addition to important information regarding the rounds of encryption, embedded in the key which is known by the sender and interpreted only by the receiver, thereby making the algorithm hack proof. The key can be constructed of any number of bits without any restriction to the size. A software application is also developed to demonstrate this process of encryption, which dynamically takes the plain text as input and readily generates the cipher text as output. Therefore, this algorithm stands as one of the strongest tools for information security.

Keywords: cipher text, cryptography, plaintext, raaga

Procedia PDF Downloads 288
1625 The Effects of Watching Text-Relevant Video Segments with/without Subtitles on Vocabulary Development of Arabic as a Foreign Language Learners

Authors: Amirreza Karami, Hawraa Nafea Hameed Alzouwain, Freddie A. Bowles

Abstract:

This study investigates the effects of watching text-relevant video segments with/without subtitles on vocabulary development of Arabic as a Foreign Language (AFL) learners. The participants of the study were assigned to two groups: one control group and one experimental group. The control group received no video-based instruction while the experimental group watched a text-relevant video segment in three stages: pre, while, and post-instruction. The preliminary results of the pre-test and post-test show that watching text-relevant video segments through following a pre-while-post procedure can help the vocabulary development of AFL learners more than non-video-based instruction.

Keywords: text-relevant video segments, vocabulary development, Arabic as a Foreign Language, AFL, pre-while-post instruction

Procedia PDF Downloads 163
1624 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 520
1623 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: online data updates, covariance matrix, online principle component analysis, matrix perturbation

Procedia PDF Downloads 193
1622 The Gap between Curriculum, Pedagogy, and National Standards of Vietnamese English Language Teacher Education

Authors: Thi Phuong Lan Nguyen

Abstract:

Vietnamese English Language Teacher Education (ELTE) has been changing a lot in response to the rapidly evolving socio-economic context requirements. The Vietnamese government assigns the Ministry of Education and Training (MOET) primary tasks to have policy changes to prepare for ELTE development in the globalization and socialization process. Many educational policies have been made to develop ELTE, however, they seem not to address the new global or social demands. The issue is that there are still significant disparities between the national policy and the institutional implementation. This study is to investigate the alignment between ELTE institutional curriculum, pedagogies, and MOET standards. This study used a mixed-method with the data sources from policy documents, a survey, and 33 interviews conducted with the lecturers and administrators from eleven Vietnamese ELTE institutions. The data have been analysed to understand the gap between policy and practice. The initial findings are (i) a low alignment of curriculum and language proficiency standards and (ii) a moderate alignment between curriculum and future-career skills standards. Many pedagogical challenges have been found. In order to address these gaps, it is necessary for the curriculum to be standards-based designed. It is also vital for professional development in order to improve the quality teaching. The study offers multiple perspectives on a complex issue. The study is meaningful not only to educational governance, but also to teaching practitioners, English language researchers, and English language learners. The significance lies in its relevance to English teaching careers across all parts of Vietnam, it yet remains relevant to ELTE in other countries teaching English as a foreign language.

Keywords: alignment, curriculum, educational policy, English language teaching, pedagogy, standards

Procedia PDF Downloads 167
1621 Teaching Pragmatic Coherence in Literary Text: Analysis of Chimamanda Adichie’s Americanah

Authors: Joy Aworo-Okoroh

Abstract:

Literary texts are mirrors of a real-life situation. Thus, authors choose the linguistic items that would best encode their intended meanings and messages. However, words mean more than they seem. The meaning of words is not static rather, it is dynamic as they constantly enter into relationships within a context. Literary texts can only be meaningful if all pragmatic cues are identified and interpreted. Drawing upon Teun Van Djik's theory of local pragmatic coherence, it is established that words enter into relations in a text and these relations account for sequential speech acts in the texts. Comprehension of the text is dependent on the interpretation of these relations.To show the relevance of pragmatic coherence in literary text analysis, ten conversations were selected in Americanah in order to give a clear idea of the pragmatic relations used. The conversations were analysed, identifying the speech act and epistemic relations inherent in them. A subtle analysis of the structure of the conversations was also carried out. It was discovered that justification is the most commonly used relation and the meaning of the text is dependent on the interpretation of these instances' pragmatic coherence. The study concludes that to effectively teach literature in English, pragmatic coherence should be incorporated as words mean more than they say.

Keywords: pragmatic coherence, epistemic coherence, speech act, Americanah

Procedia PDF Downloads 135
1620 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 103
1619 The Impact of Text Modifications on Ethiopian Students’ Reading Comprehension and Motivation

Authors: Asefa Kenefergib, Dawit Amogne, Yinager Teklesellassie

Abstract:

A study investigated the effects of text modifications on reading comprehension and motivation among Ethiopian secondary school students. A total of 120 students participated, initially taking a reading comprehension pretest and completing a reading motivation questionnaire. Afterward, they were divided into three groups: control, simplified, and elaborated. Each group then took part in a reading comprehension posttest and another reading motivation questionnaire following an eight-week instructional intervention. Despite initial differences, both the simplified and elaborated text groups showed comparable levels of reading motivation and comprehension. The data were analyzed using SPSS version 25, with a one-way ANOVA used to assess the effectiveness of the modified texts in enhancing reading comprehension. The results indicated that the experimental groups performed significantly better on the posttest compared to the control group, suggesting that text modifications can positively influence students' comprehension skills. Furthermore, the impact of text modifications on student reading motivation was assessed using a one-way ANOVA. The findings revealed that both the elaborated and simplified text groups scored higher than the control group in various dimensions of reading motivation, including reading efficacy, curiosity, challenge, compliance, and reading work avoidance. However, the control and simplified groups had nearly similar mean scores in the dimension of reading competition. These results clearly demonstrate that modifying texts can enhance EFL learners' reading motivation and comprehension.

Keywords: simplification, elaboration, reading motivation, reading comprehension

Procedia PDF Downloads 37
1618 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 517
1617 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach

Authors: Yassir Abdelrazig, Ren Moses

Abstract:

Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.

Keywords: gemoetric design, optimization, planning, roadway planning, roadway design

Procedia PDF Downloads 336
1616 Merging and Comparing Ontologies Generically

Authors: Xiuzhan Guo, Arthur Berrill, Ajinkya Kulkarni, Kostya Belezko, Min Luo

Abstract:

Ontology operations, e.g., aligning and merging, were studied and implemented extensively in different settings, such as categorical operations, relation algebras, and typed graph grammars, with different concerns. However, aligning and merging operations in the settings share some generic properties, e.g., idempotence, commutativity, associativity, and representativity, labeled by (I), (C), (A), and (R), respectively, which are defined on an ontology merging system (D~M), where D is a non-empty set of the ontologies concerned, ~ is a binary relation on D modeling ontology aligning and M is a partial binary operation on D modeling ontology merging. Given an ontology repository, a finite set O ⊆ D, its merging closure Ô is the smallest set of ontologies, which contains the repository and is closed with respect to merging. If (I), (C), (A), and (R) are satisfied, then both D and Ô are partially ordered naturally by merging, Ô is finite and can be computed, compared, and sorted efficiently, including sorting, selecting, and querying some specific elements, e.g., maximal ontologies and minimal ontologies. We also show that the ontology merging system, given by ontology V -alignment pairs and pushouts, satisfies the properties: (I), (C), (A), and (R) so that the merging system is partially ordered and the merging closure of a given repository with respect to pushouts can be computed efficiently.

Keywords: ontology aligning, ontology merging, merging system, poset, merging closure, ontology V-alignment pair, ontology homomorphism, ontology V-alignment pair homomorphism, pushout

Procedia PDF Downloads 892
1615 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 397
1614 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 6
1613 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text

Authors: Trisha Malhotra

Abstract:

Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.

Keywords: analysis, data, diary, emotions, mood, sentiment

Procedia PDF Downloads 267
1612 3D Text Toys: Creative Approach to Experiential and Immersive Learning for World Literacy

Authors: Azyz Sharafy

Abstract:

3D Text Toys is an innovative and creative approach that utilizes 3D text objects to enhance creativity, literacy, and basic learning in an enjoyable and gamified manner. By using 3D Text Toys, children can develop their creativity, visually learn words and texts, and apply their artistic talents within their creative abilities. This process incorporates haptic engagement with 2D and 3D texts, word building, and mechanical construction of everyday objects, thereby facilitating better word and text retention. The concept involves constructing visual objects made entirely out of 3D text/words, where each component of the object represents a word or text element. For instance, a bird can be recreated using words or text shaped like its wings, beak, legs, head, and body, resulting in a 3D representation of the bird purely composed of text. This can serve as an art piece or a learning tool in the form of a 3D text toy. These 3D text objects or toys can be crafted using natural materials such as leaves, twigs, strings, or ropes, or they can be made from various physical materials using traditional crafting tools. Digital versions of these objects can be created using 2D or 3D software on devices like phones, laptops, iPads, or computers. To transform digital designs into physical objects, computerized machines such as CNC routers, laser cutters, and 3D printers can be utilized. Once the parts are printed or cut out, students can assemble the 3D texts by gluing them together, resulting in natural or everyday 3D text objects. These objects can be painted to create artistic pieces or text toys, and the addition of wheels can transform them into moving toys. One of the significant advantages of this visual and creative object-based learning process is that students not only learn words but also derive enjoyment from the process of creating, painting, and playing with these objects. The ownership and creation process further enhances comprehension and word retention. Moreover, for individuals with learning disabilities such as dyslexia, ADD (Attention Deficit Disorder), or other learning difficulties, the visual and haptic approach of 3D Text Toys can serve as an additional creative and personalized learning aid. The application of 3D Text Toys extends to both the English language and any other global written language. The adaptation and creative application may vary depending on the country, space, and native written language. Furthermore, the implementation of this visual and haptic learning tool can be tailored to teach foreign languages based on age level and comprehension requirements. In summary, this creative, haptic, and visual approach has the potential to serve as a global literacy tool.

Keywords: 3D text toys, creative, artistic, visual learning for world literacy

Procedia PDF Downloads 64
1611 Motion Effects of Arabic Typography on Screen-Based Media

Authors: Ibrahim Hassan

Abstract:

Motion typography is one of the most important types of visual communication based on display. Through the digital display media, we can control the text properties (size, direction, thickness, color, etc.). The use of motion typography in visual communication made it have several images. We need to adjust the terminology and clarify the different differences between them, so relying on the word motion typography -considered a general term- is not enough to separate the different communicative functions of the moving text. In this paper, we discuss the different effects of motion typography on Arabic writing and how we can achieve harmony between the movement and the letterform, and we will, during our experiments, present a new type of text movement.

Keywords: Arabic typography, motion typography, kinetic typography, fluid typography, temporal typography

Procedia PDF Downloads 159
1610 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 405