Search results for: sulfur hexafluoride
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 200

Search results for: sulfur hexafluoride

110 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation

Authors: Medhanie Gebremedhin Gebru, Alex Schechter

Abstract:

Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².

Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation

Procedia PDF Downloads 121
109 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study

Authors: Lijuan Li

Abstract:

Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.

Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide

Procedia PDF Downloads 282
108 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.

Keywords: soybean, polyol, up-scaling, polyurethane

Procedia PDF Downloads 334
107 Study of the Montmorillonite Effect on PET/Clay and PEN/Clay Nanocomposites

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Nanocomposite polymer / clay are relatively important area of research. These reinforced plastics have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters ie polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/ poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This was evidence that both PET/PEN and nPET/nPEN blends are compatible in the entire range of compositions. In addition, the nPET/nPEN blends showed lower Tc and higher Tm values than the corresponding neat PET/PEN blends. In conclusion, the results obtained indicate that n(PET/PEN) blends are different from the pure ones in nanostructure and physical behavior.

Keywords: blends, exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 276
106 Influence of Non-Carcinogenic Risk on Public Health

Authors: Gulmira Umarova

Abstract:

The data on the assessment of the influence of environmental risk to the health of the population of Uralsk in the West region of Kazakhstan were presented. Calculation of non-carcinogenic risks was performed for such air pollutants as sulfur dioxide, nitrogen oxides, hydrogen sulfide, carbon monoxide. Here with the critical organs and systems, which are affected by the above-mentioned substances were taken into account. As well as indicators of primary and general morbidity by classes of diseases among the population were considered. The quantitative risk of the influence of substances on organs and systems is established by results of the calculation.

Keywords: environment, health, morbidity, non-carcinogenic risk

Procedia PDF Downloads 93
105 The Behavior of O3 and Its Nitrogen and Sulfur Precursors in Sea Breeze Scenarios on the Coast of Gabès (Tunisia)

Authors: Allagui Mohamed

Abstract:

The study of the concentrations of atmospheric pollutants is analyzed during two days of sea breeze (April 26, 2010, and January 11, 2008) on the Mediterranean coasts, just in front of Gabès (33 ° 53 'N, 10 ° 07' E), Tunisia. During these two cases, we found that Gabès was contaminated by a coastal sea breeze. On April 26, 2010, the terrestrial synoptic wind admitted a maximum speed of about 6 m / s and was approximately perpendicular to the coast and making the breeze easier. On January 11, 2008, the terrestrial wind was local. Under these conditions, O3 and, therefore, the concentrations were multiplied by the factors 0.1 and 2, respectively. The episodes of ozone concentrations faithfully follow the sea breeze circulation. These sea breeze events can be responsible for high concentrations of NO, NO2, and SO2 as air pollutants in this area.

Keywords: sea breeze, O3, cost town, air quality

Procedia PDF Downloads 82
104 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia

Authors: Nicolaas Unland, John Webb

Abstract:

The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.

Keywords: acid sulfate soil, incubation, management, model, risk

Procedia PDF Downloads 341
103 Mechanism of Failure of Pipeline Steels in Sour Environment

Authors: Abhishek Kumar

Abstract:

X70 pipeline steel was electrochemically charged with hydrogen for different durations in order to find crack nucleation and propagation sites. After 3 hours charging, suitable regions for crack initiation and propagation were found. These regions were studied by OM, SEM, EDS and later Vicker hardness test was done. The results brought out that HIC cracks nucleated from regions rich of inclusions and further propagated through the segregation area of some elements, such as manganese, carbon, silicon and sulfur. It is worth-mentioning that all these potential sites for crack nucleation and propagation appeared at the centre of cross section of the specimens. Additionally, cracked area has harder phase than the non-cracked area which was confirmed by hardness test.

Keywords: X70 steel, morphology of inclusions, SEM/EDS/OM, simulation, statistical data

Procedia PDF Downloads 297
102 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 535
101 Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives

Authors: Gabi N. Nehme

Abstract:

The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm.

Keywords: wear, SEM, EDS, friction, lubricants

Procedia PDF Downloads 265
100 Extraction of Aromatic Hydrocarbons from Lub Oil Using Sursurfactant as Additive

Authors: Izza Hidaya, Korichi Mourad

Abstract:

Solvent extraction is an affective method for reduction of aromatic content of lube oil. Frequently with phenol, furfural, NMP(N-methyl pyrrolidone). The solvent power and selectivity can be further increased by using surfactant as additive which facilitate phase separation and to increase raffinate yield. The aromatics in lube oil were extracted at different temperatures (ranging from 333.15 to 343.15K) and different concentration of surfactant (ranging from 0.01 to 0.1% wt).The extraction temperature and the amount of sulfate lauryl éther de sodium In phenoll were investigated systematically in order to determine their optimum values. The amounts of aromatic, paraffinic and naphthenic compounds were determined using ASTM standards by measuring refractive index (RI), viscosity, molecular weight and sulfur content. It was found that using 0,01%wt. surfactant at 343.15K yields the optimum extraction conditions.

Keywords: extraction, lubricating oil, aromatics, hydrocarbons

Procedia PDF Downloads 500
99 Catalytic Activity of CU(II) Complex on C(SP3)-H Oxidation Reactions

Authors: Yalçın Kılıç, İbrahim Kani

Abstract:

In recent years, interest in the synthesis of coordination compounds has greatly increased due to various application areas (such as catalysis, gas storage, luminescence). Dicarboxylic acids are often used in the synthesis of metal complexes. Bis-thiosalicylate derivative ligands contribute to the synthesis of structures of crystal engineering interest, as they can have both rigid and flexible properties. In addition, these ligands have great potential in terms of catalytic applications with the sulfur and oxygen donor atoms in their structures. In this study, we synthesized a Cu(II) complex [Cu(tsaxyl)(phen)2]•CH3OH (where tsaxyl = 2,2'-(1,2-phylenebis(methylene))bis(sulfanedyl)dibenzoate, phen = 1,10-phenantroline) and characterized through X-ray crystallography. The catalytic activities of Cu(II) complex on oxidation of ethylbenzene, cyclohexane, diphenylmethane, p-xylene were performed in acetonitrile with t-BuOOH as the source of oxygen.

Keywords: complex, crystallography, catalysis, oxidation

Procedia PDF Downloads 83
98 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 152
97 Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles

Authors: Mohamed Khedr, Ahmed Farghali, Waleed El Rouby, Abdelrhman Hamdeldeen

Abstract:

Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-.

Keywords: CeO2, doped CeO2, photocatalysis, methylene blue

Procedia PDF Downloads 303
96 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 110
95 Synthesis, Spectroscopic and Thermal Studies of Copper(I) Chlorido Complexes of Thioureas

Authors: Muhammad Mufakkar, Ghulam Hussain Bhatti, Maryem Rana

Abstract:

The study of the coordination behavior of thiones is of considerable interest due to the similarity of their binding sites to those in living systems. The complexation of thiones towards Copper(I) has also received considerable attraction in view of their variable bonding modes, structural diversity and promising biological implications. Copper (I) complexes of thioureas of the general formula: CuLCl, CuL2Cl and CuL3Cl [where L= Thiourea and its N- and N, N/- mono and di alkyl and phenyl derivatives] have been prepared using Cu(I)CN in the presence of HCl. The complexes have been characterized by thermal, IR and NMR(1H and 13C) spectroscopy. An upfield shift in 13C NMR and downfield shifts in 1H NMR are consistent with the sulfur coordination to Copper(I). The disappearance of a band around 2200 cm⁻¹ in IR and a resonance around 146 ppm in 13C NMR indicates that during the course of reaction the cyanide group of the Copper(I) salt has been replaced by chloride leading to the formation of chlorido complexes.

Keywords: Thiones, complexation, spectra, TGA, thermogram, chemical shifts, deshielding, resonance

Procedia PDF Downloads 220
94 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 346
93 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 160
92 Treatment of Acid Mine Drainage with Metallurgical Slag

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.

Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization

Procedia PDF Downloads 163
91 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 355
90 Comparative Analysis of Technologies for Production of Granular NPKS-Fertilizers

Authors: Andrey Norov

Abstract:

Based on a comparison of technologies for the production of granular nitrate-containing and nitrate-free NPKS-fertilizers, this paper considers the effect of process parameters on the economic feasibility of production, on physical & chemical, and structural & mechanical properties and quality of final products (caking, static strength of granules, hygroscopicity, etc.), as well as on thermal stability of fertilizers, eco-friendly production, and other aspects. This comparative analysis allows to select the optimal technology for specific conditions and requirements. Additionally, the report considers flexible, a unique technology for the production of granular NPKS-fertilizers containing sulfur and calcium, suggested by Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF” - the oldest industry-oriented institute in Russia. This technology is implemented at one of the Russian plants where combined drum is used for granulation and drying.

Keywords: caking, granule static strength, granulating-drying drum, NPKS-fertilizers

Procedia PDF Downloads 80
89 Treatment of Acid Mine Drainage with Modified Fly Ash

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) is the generation of acidic water from active as well as abandoned mines. AMD generates due to the oxidation of pyrites present in the rock in mining areas. Sulfur oxidizing bacteria such as Thiobacillus ferrooxidans acts as a catalyst in this oxidation process. The characteristics of AMD is extreme low pH (2-3) with elevated concentration of different heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such sulfate and chloride. AMD contaminate the ground water as well as surface water which leads to the degradation of water quality. Moreover, it carries detrimental effect for aquatic organism and degrade the environment. In the present study, AMD is treated with fly ash, modified with alkaline agent (NaOH). This modified fly ash (MFA) was experimentally proven as a very effective neutralizing agent for the treatment of AMD. It was observed that pH of treated AMD raised to 9.22 from 1.51 with 100g/L of MFA dose. Approximately, 99% removal of Fe, Al, Mn, Cu and Co took place with the same MFA dose. The treated water comply with the effluent discharge standard of (IS: 2490-1981).

Keywords: acid mine drainage, heavy metals, modified fly ash, neutralization

Procedia PDF Downloads 127
88 Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model.

Keywords: ATC, desulfurization, pyrolysis, tire, TPO

Procedia PDF Downloads 91
87 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 130
86 Correlation between Indoor and Outdoor Air

Authors: Jamal A. Radaideh, Ziad N. Shatnawi

Abstract:

Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7).

Keywords: criteria air pollutants, indoor/outdoor air pollution, indoor/outdoor ratio, Saudi Arabia

Procedia PDF Downloads 395
85 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 229
84 Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process

Authors: Young Jun Lee, Tae Hyuk Lee, Kyoung Tae Park, Jong Hyeon Lee

Abstract:

The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance.

Keywords: tantalum, tantalum alloy, tungsten alloy, electroplating

Procedia PDF Downloads 393
83 Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes

Authors: Huey-Kuo Chen

Abstract:

This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles.

Keywords: marginal productivity, road transportation modes, shadow price, undesirable outputs

Procedia PDF Downloads 121
82 A Novel CeO2-WOx-TiO2 Catalyst for Oxidative Desulfurization of Model Fuel Oil

Authors: Corazon Virtudazo-Ligaray, Mark Daniel G. de Luna, Meng-Wei Wan, Ming-Chun Lu

Abstract:

A series of ternary compound catalyst with nanocomposites of ceria, tungsten trioxide and titania (CeO2-WOx-TiO2) with different WOx mole fraction (10, 20, 30, 40) have been synthesized by sol-gel method. These nanocomposite catalysts were used for oxidative extractive desulfurization of model fuel oil, which were composed of dibenzothiophene (DBT) dissolved in toluene. The 30% hydrogen peroxide, H2O2 was used as oxidant and acetonitrile as extractant. These catalysts were characterized by SEM-EDS to determine the morphology. Catalytic oxidation results show that the catalysts have high selectivity in refractory fuel oil with organo sulfur contents. The oxidative removal of DBT increases as the HPW content increases. The nanocomposites CeO2-WOx-TiO2 also shows high selectivity for DBT oxidation in the DBT–toluene acetonitrile system. The catalytic oxidative desulfurization ratio of model fuel reached to 100% with nanocomposites CeO2-WOx-TiO2 (35-30-35) mol percent catalyst nanocomposition under 333 K in 30 minutes.

Keywords: ceria, oxidative desulfurization, titania, phosphotungstic acid

Procedia PDF Downloads 389
81 Optimization of Conventional Method of Estimating Power Generation from Compus Solid Waste Using an Intelligent Technique

Authors: Danladi Ali

Abstract:

This work proposed to adopt and optimize the conventional method of estimating power generated from campus solid waste (CSW) using an intelligent technique. The chemical content of the CSW was analyzed, the population responsible for the generation of the CSW, the amount of CSW generated, power to grid predicted and forecasted were obtained, and sources of supply of electricity for Adamawa State University (ADSU) were compared with the PGPs estimated from the CSW. The percentage content of the chemical elements was obtained as 56.90% carbon, 8.40% hydrogen, 27.70% oxygen, 6.00% nitrogen and 1.00% sulfur. The amount of the CSW generated and power to grid predicted and forecasted for 10 years was determined as 287.74 tons/day, 13.12MW and 12.90 MW, respectively. A model for estimating power potential from CSW for ADSU was developed, and also the work revealed that the PGPs estimated from the CSW are adequate to power the University for 24 hours on a daily basis.

Keywords: prediction, intelligent, forecasting, environment, power to grid, campus solid waste

Procedia PDF Downloads 14