Search results for: spatiotemporal continuous wavelet transform
3855 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2253854 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4373853 Device Control Using Brain Computer Interface
Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh
Abstract:
In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network
Procedia PDF Downloads 3333852 Wavelet Based Signal Processing for Fault Location in Airplane Cable
Authors: Reza Rezaeipour Honarmandzad
Abstract:
Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal
Procedia PDF Downloads 5233851 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations
Authors: K. P. Mredula, D. C. Vakaskar
Abstract:
The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods
Procedia PDF Downloads 2983850 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts
Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati
Abstract:
New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.Keywords: FLiNaK, heat transfer, molten salt, turbulent structures
Procedia PDF Downloads 4483849 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 1223848 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 3313847 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus
Authors: Majid Forghani, Michael Khachay
Abstract:
In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition
Procedia PDF Downloads 1513846 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 4443845 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 3173844 Red Blood Cells Deformability: A Chaotic Process
Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso
Abstract:
Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform
Procedia PDF Downloads 593843 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling
Procedia PDF Downloads 1743842 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)
Procedia PDF Downloads 2593841 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1943840 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 4283839 Wavelet Based Advanced Encryption Standard Algorithm for Image Encryption
Authors: Ajish Sreedharan
Abstract:
With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. As encryption process is applied to the whole image in AES ,it is difficult to improve the efficiency. In this paper, wavelet decomposition is used to concentrate the main information of image to the low frequency part. Then, AES encryption is applied to the low frequency part. The high frequency parts are XORed with the encrypted low frequency part and a wavelet reconstruction is applied. Theoretical analysis and experimental results show that the proposed algorithm has high efficiency, and satisfied security suits for image data transmission.Keywords: discrete wavelet transforms, AES, dynamic SBox
Procedia PDF Downloads 4313838 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 5003837 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1733836 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3683835 Reversible and Adaptive Watermarking for MRI Medical Images
Authors: Nisar Ahmed Memon
Abstract:
A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images.Keywords: adaptive thresholding, companding technique, data authentication, reversible watermarking
Procedia PDF Downloads 2953834 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model
Procedia PDF Downloads 3913833 Wavelet Method for Numerical Solution of Fourth Order Wave Equation
Authors: A. H. Choudhury
Abstract:
In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method
Procedia PDF Downloads 3143832 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2843831 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 5973830 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 2873829 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method
Authors: Hakiki Kheira, Belhamiti Omar
Abstract:
In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity
Procedia PDF Downloads 4203828 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network
Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup
Abstract:
This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis
Procedia PDF Downloads 1133827 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD
Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik
Abstract:
The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet
Procedia PDF Downloads 5683826 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 349