Search results for: protein C
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2360

Search results for: protein C

2270 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 409
2269 Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

Authors: Zarmina Gillani, Nuzhat Huma, Aysha Sameen, Mulazim Hussain Bukhari

Abstract:

Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P < 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p < 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 °C compared to whey powder processed at 180 °C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P < 0.05) effect of temperature on whey protein contents. Denaturation of β-Lactoglobulin is followed by α-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA).

Keywords: whey powder, temperature, denaturation, reverse phase, HPLC

Procedia PDF Downloads 300
2268 Towards the Inhibition Mechanism of Lysozyme Fibrillation by Hydrogen Sulfide

Authors: Indra Gonzalez Ojeda, Tatiana Quinones, Manuel Rosario, Igor Lednev, Juan Lopez Garriga

Abstract:

Amyloid fibrils are stable aggregates of misfolded protein associated with many neurodegenerative disorders. It has been shown that hydrogen sulfide (H2S), inhibits the fibrillation of lysozyme through the formation of trisulfide (S-S-S) bonds. However, the overall mechanism remains elusive. Here, the concentration dependence of H2S effect was investigated using Atomic force microscopy (AFM), non-resonance Raman spectroscopy, Deep-UV Raman spectroscopy and circular dichroism (CD). It was found that small spherical aggregates with trisulfide bonds and a unique secondary structure were formed instead of amyloid fibrils when adding concentrations of 25 mM and 50 mM of H2S. This could indicate that H2S might serve as a protecting agent for the protein. However, further characterization of these aggregates and their trisulfide bonds is needed to fully unravel the function H2S has on protein fibrillation.

Keywords: amyloid fibrils, hydrogen sulfide, protein folding, raman spectroscopy

Procedia PDF Downloads 217
2267 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 125
2266 C-Reactive Protein in Patients with Type 2 Diabetes Mellitus

Authors: Athar Hussain Memon

Abstract:

Objectives: We tried to determine the frequency of raised C-reactive protein (CRP) in patients with type 2 diabetes mellitus. Patients and Methods: This cross-sectional descriptive study of six months study was conducted at Liaquat University Hospital Hyderabad from March 2013 to August 2013. All diabetic patients of ≥35 years age of either gender for >01 year duration visited at OPD were evaluated for C-reactive protein and their glycemic status by hemoglobin A1c. The data was analyzed in SPSS and the frequency and percentage were calculated. Results: During six month study period, total 100 diabetic patients were evaluated for C-reactive protein. The majority of patients were from urban areas 75/100 (75%). The mean ±SD for age of patients with diabetes mellitus was 51.63±7.82. The mean age ±SD of patient with raised CRP was 53±7.21. The mean ±SD for HbA1c in patients with raised CRP is 9.55±1.73. The mean random blood sugar level in patients with raised CRP was 247.42 ± 6.62. The majority of subjects were of 50-69 years of age group with female predominance (p=0.01) while the CRP was raised in 70 (70%) patients in relation to age (p=0.02) and gender (p=0.01), respectively. Both HbA1c and CRP were raised in 64.9% (p=0.04) in patients with type 2 diabetes mellitus. The mean ±SD of CRP was 5.8±1.21 while for male and female individuals with raised CRP was 3.52±1.22 and 5.7±1.63, respectively. Conclusions: The raised CRP was observed in patients with type 2 diabetes mellitus.

Keywords: diabetes mellitus, C-reactive protein, hemoglobin A1c, diabetes and metabolism

Procedia PDF Downloads 415
2265 Production of Recombinant VP2 Protein of Canine Parvovirus Type 2c Using Baculovirus Expression System

Authors: Jae Young Song, In-Ohk Ouh, Seyeon Park, Byeong Sul Kang, Soo Dong Cho, In-Soo Cho

Abstract:

Canine parvovirus (CPV) is a major pathogen of diarrhea disease in dogs. CPV type 2 has three of antigenic variants such as 2a, 2b, and 2c. CPV constructs a small non-enveloped, icosahedral capsid that contains single-stranded DNA. It has capsids that two largely overlapping virion proteins (VP), VP1 (82 kDa), and VP2 (65 kDa). Baculoviruses are insect pathogens that regulate insect populations in nature and are being successfully used to control insect pests. The proteins produced in the baculovirus-expression system are used for instance for functional studies, vaccine preparations, or diagnostics. The vaccines produced by baculovirus-expression system showed elicitation of antibodies. The recombinant baculovirus infected SF9 cells showed broken shape. The recombinant VP2 proteins from cell pellet or supernatant were confirmed by western blotting. The result showed that the recombinant VP2 protein bands were appeared at 65 kDa molecular weight in both cell pellet and supernatant of infected SF9 cell. These results indicated that the recombinant baculovirus infected SF9 cell express the recombinant VP2 protein successfully. In addition, the expressed recombinant VP2 protein is secreted from cell to supernatant. The baculovirus expression system can be used to produce the VP2 protein of CPV 2c. In addition, the secretion property of the expression of VP2 protein may decrease the cost of production, because it can be skipped the cell breaking step. The produced VP2 protein could be used for vaccine and the agent of diagnostic tests. This study provides the foundation of the production of CPV 2c vaccine and the diagnostic agent.

Keywords: baculovirus, canine parvovirus 2c, dog, Korea

Procedia PDF Downloads 151
2264 Phase Transition in Iron Storage Protein Ferritin

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Ferritin is a protein which present in the blood of mammals. It maintains the need of iron inside the body. It has an antiferromagnetic iron core, 7-8 nm in size, which is encapsulated inside a protein cage. The thickness of this protein shell is about 2-3 nm. This protein shell reduces the interaction among particles and make ferritin a model superparamagnet. The major composition of ferritin core is mineral ferrihydrite. The molecular formula of ferritin core is (FeOOH)8[FeOOPO3H2]. In this study, we discuss the phase transition of ferritin. We characterized ferritin using x-ray diffractometer, transmission electron micrograph, thermogravimetric analyzer and vibrating sample magnetometer. It is found that ferritin core is amorphous in nature with average particle size of 8 nm. The thermogravimetric and differential thermogravimetric analysis curves shows mass loss at different temperatures. We heated ferritin at these temperatures. It is found that ferritin core starts decomposing after 390^o C. At 1020^o C, the ferritin core is finally converted to alpha phase of iron oxide. Magnetization behavior of final sample clearly shows the iron oxyhydroxide core is completely converted to alpha iron oxide.

Keywords: Antiferromagnetic, Ferritin, Phase, Superparamagnetic

Procedia PDF Downloads 120
2263 Interaction of Histone H1 with Chromatin-associated Protein HMGB1 Studied by Microscale Thermophoresis

Authors: Michal Štros, Eva Polanská, Šárka Pospíšilová

Abstract:

HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. MALDI-TOF analysis revealed that mild oxidization of HMGB1 resulted in a conformational change of the protein due to formation of an intramolecular disulphide bond by opposing Cys23 and Cys45 residues. We have demonstrated that redox state of HMGB1 could significantly modulate the ability of the protein to bind and bend DNA. We have also shown that reduced HMGB1 could easily displace histone H1 from DNA, while oxidized HMGB1 had limited capacity for H1 displacement. Using microscale thermophoresis (MST) we have further studied mechanism of HMGB1 interaction with histone H1 in free solution or when histone H1 was bound to DNA. Our MST analysis indicated that reduced HMGB1 exhibited in free solution > 1000 higher affinity of for H1 (KD ~ 4.5 nM) than oxidized HMGB1 (KD <10 M). Finally, we present a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA.

Keywords: HMGB1, histone H1, redox state, interaction, cross-linking, DNA bending, DNA end-joining, microscale thermophoresis

Procedia PDF Downloads 336
2262 Evidence of Paternal Protein Provisioning During Male Pregnancy in the Seahorse, Hippocampus Abdominalis

Authors: Zoe M. G. Skalkos, Sam N. Dowland, James U. Van Dyke, Camilla. M. Whittington

Abstract:

Syngnathid fishes (seahorses, pipefishes, and seadragons) are unique because embryos develop on or in the male in a specialised brooding structure. Many seahorse species are endangered or vulnerable, while others are popular in the ornamental fish trade. Seahorses are capable of nutrient provisioning (patrotrophy) of lipids during pregnancy via their fully enclosed brood pouch. Protein is vital for gene regulation and tissue growth during embryogenesis. We tested the hypothesis that protein is paternally transported to developing embryos during pregnancy in the Australian Pot-bellied seahorse, Hippocampus abdominalis. We compared the dry masses and nitrogen content in recently fertilised H. abdominalis embryos and newborns. We calculated an updated patrotrophy index, 1.34, but without a significant difference in dry mass between the two developmental stages. There was, however, a significant increase in total protein content from recently fertilised embryos to neonates. This suggests paternal protein transport is essential for H. abdominalis embryogenesis because protein yolk reserves are depleted by embryonic metabolism, and supplementation is required. This study is the first to provide evidence for paternal protein transport during pregnancy in seahorses. It furthers our understanding of the paternal influence on embryonic development in male pregnancy and how a protein-deficient diet during pregnancy may limit the allocation of resources to embryos, reducing offspring fitness. This research contributes to a deeper understanding of the fundamental reproductive biology of seahorses, which can help improve conservation and farming production outcomes.

Keywords: brood pouch, embryonic provisioning, nitrogen, parentotrophy, paternal investment, reproduction

Procedia PDF Downloads 105
2261 Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula

Authors: K. Cartelier, D. Aime, V. Vernoud, J. Buitink, J. M. Prosperi, K. Gallardo, C. Le Signor

Abstract:

Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality.

Keywords: GWAS, Medicago truncatula, plasticity, seed, storage proteins

Procedia PDF Downloads 142
2260 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 450
2259 The Effect of Dendrobium nobile Lindl. Alkaloids on the Blood Glucose and Amyloid Precursor Protein Metabolic Pathways in Db/Db Mice

Authors: Juan Huang, Nanqu Huang, Jingshan Shi, Yu Qiu

Abstract:

Objectives: There are pathophysiological connections between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), and research on drugs with hypoglycemic and beta-amyloid (Aβ)-clearing effects have great therapeutic potential for AD. Dendrobium nobile Lindl. Alkaloids (DNLA) as one of the active compounds of Dendrobium nobile Lindl. In this study, we attempted to verify the hypoglycemic effect and investigate the effects of DNLA on the amyloid precursor protein (APP) metabolic pathway of the hippocampus in db/db mice. Methods: 4-weeks-old male C57BL/KsJ mice were the control group. And the same age and sexuality db/db mice were: model, DNLA-L (20 mg/kg), DNLA-M (40 mg/kg), and DNLA-H (80 mg/kg). After, mice were treated with different concentrations of DNLA for 17 weeks. The fasting blood glucose (FBG) was detected by glucose oxidase assay every week from the 4th to last week. The protein expression of β-amyloid 1-42 (Aβ1-42), β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and APP were examined by Western blotting. Results: The concentration of FBG and the protein expression of Aβ1-42, BACE1, and APP were increased in the hippocampus of the model group. Moreover, DNLA not only significantly decreased the concentration of FBG but also reduced the protein expressions of Aβ1-42, BACE1 and APP in the hippocampus of db/db mice in a dose-dependent manner. Conclusions: DNLA can decrease the protein expressions of Aβ1-42 in the hippocampus of db/db mice, and the mechanism may be involved in the APP metabolic pathway.

Keywords: Alzheimer's disease, type 2 diabetes mellitus, β-site amyloid precursor protein-cleaving enzyme 1, traditional Chinese medicines, beta-amyloid

Procedia PDF Downloads 256
2258 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex

Authors: Shahnaz Ashrafpour, Tahereh Tohidi Moghadam, Bijan Ranjbar

Abstract:

Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 µM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme-AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.

Keywords: nanocarrier, nanoparticles, surface plasmon resonance, quenching fluorescence

Procedia PDF Downloads 331
2257 Spectrofluorometric Studies on the Interactions of Bovine Serum Albumin with Dimeric Cationic Surfactants

Authors: Srishti Sinha, Deepti Tikariha, Kallol K. Ghosh

Abstract:

Over the past few decades protein-surfactant interactions have been a subject of extensive studies as they are of great importance in wide variety of industries, biological, pharmaceutical and cosmetic systems. Protein-surfactant interactions have been explored the effect of surfactants on structure of protein in the form of solubilization and denaturing or renaturing of protein. Globular proteins are frequently used as functional ingredients in healthcare and pharmaceutical products, due to their ability to catalyze biochemical reactions, to be adsorbed on the surface of some substance and to bind other moieties and form molecular aggregates. One of the most widely used globular protein is bovine serum albumin (BSA), since it has a well-known primary structure and been associated with the binding of many different categories of molecules, such as dyes, drugs and toxic chemicals. Protein−surfactant interactions are usually dependent on the surfactant features. Most of the research has been focused on single-chain surfactants. More recently, the binding between proteins and dimeric surfactants has been discussed. In present study interactions of one dimeric surfactant Butanediyl-1,4-bis (dimethylhexadecylammonium bromide) (16-4-16, 2Br-) and the corresponding single-chain surfactant cetyl trimethylammonium bromide (CTAB) with bovine serum albumin (BSA) have been investigated by surface tension and spectrofluoremetric methods. It has been found that the bindings of all gemini surfactant to BSA were cooperatively driven by electrostatic and hydrophobic interactions. The gemini surfactant carrying more charges and hydrophobic tails, showed stronger interactions with BSA than the single-chain surfactant.

Keywords: bovine serum albumin, gemini surfactants, hydrophobic interactions, protein surfactant interaction

Procedia PDF Downloads 510
2256 Alterations of Malondialdehyde and Heat Shock Protein-27 in Sheep with Naturally Infected Liver Cystic Echinococcosis

Authors: K. Azimzadeh, S. Rasouli

Abstract:

The present study investigates whether malondialdehyde (MDA) and heat shock protein-27 (HSP-27) are altered in sheep with cystic echinococcosis (CE). For this purpose, forty parasitized and thirty healthy sheep were selected based on severe cystic form observation in liver and lack of blood parasite along with no cystic conformation in carcass respectively. The results revealed a significant decrease (p<0.01) in albumin (Alb) and total plasma protein (TPP) and a significant increase (p<0.01) in HSP-27, MDA, total bilirubin and unconjugated bilirubin in the infected group compared with healthy ones.The results indicate low levels of TPP and Alb reveal liver damage in suffered sheep and MDA elevation demonstrates oxidative stress in infected group. In addition, HSP-27 enhancement may attribute to disease-induced stress conditions.

Keywords: malondialdehyde, heat shock protein-27, Echinococcosis, blood parasites

Procedia PDF Downloads 608
2255 In vitro and invivo Antioxidant Studies of Grewia crenata Leaves Extract in Albino Rats

Authors: A. N.Ukwuani, A. K. Abdulfatah

Abstract:

G. crenata is used locally for the treatment of fractured bones, wound healing and inflammatory conditions. In vitro and in vivo antioxidant activity of hydromethanolic extracts of the leaves of G. crenata were assessed. The phytochemical analysis shows the presence of phenols, flavonoids, saponins, cardiac glycosides and tannins. An in vitro quantitative analysis of phenols, flavonoids and tannins respectively were (164±1.20, 199±0.88 and 88.67±0.88 mg/100g FW). In vivo studies of hydromethanolic extract demonstrated a dose dependent increase in hepatic superoxide dismutase (1.14±0.14, 2.13±0.11, 2.55±0.11 U/mg Protein) with improvement in hepatic glutathione (6.98±0.42, 8.91±0.37, 11.07±0.46 µM/mg Protein) and Catalase (4.47±0.05, 6.24±0.02, 7.17±0.04 U/mg Protein) and Total protein (6.18±0.08, 6.69±0.18, 7.27±0.16 mg/ml) respectively at 100-300mg/kg body weight Grewia crenata leaves when compared to the control and standard drug. It can be concluded from the present findings of that G. crenata leaves possess antioxidant potential.

Keywords: Grewia crenata, antioxidant, hydromethanolic extract, in vivo, in vitro

Procedia PDF Downloads 555
2254 Functional Cell Surface Display Using Ice Nucleation Protein from Erwina ananas on Escherischia coli

Authors: Mei Yuin Joanne Wee, Rosli Md. Illias

Abstract:

Cell surface display is the expression of a protein with an anchoring motif on the surface of the cell. This approach offers advantages when used in bioconversion in terms of easier purification steps and more efficient enzymatic reaction. A surface display system using ice nucleation protein (InaA) from Erwina ananas as an anchoring motif has been constructed to display xylanase (xyl) on the surface of Escherischia coli. The InaA was truncated so that it is made up of the N- and C-terminal domain (INPANC-xyl) and it has successfully directed xylanase to the surface of the cell. A study was also done on xylanase fused to two other ice nucleation proteins, InaK (INPKNC-xyl) and InaZ (INPZNC-xyl) from Pseudomonas syringae KCTC 1832 and Pseudomonas syringae S203 respectively. Surface localization of the fusion protein was verified using SDS-PAGE and Western blot on the cell fractions and all anchoring motifs were successfully displayed on the outer membrane of E. coli. Upon comparison, whole-cell activity of INPANC-xyl was more than six and five times higher than INPKNC-xyl and INPZNC-xyl respectively. Furthermore, the expression of INPANC-xyl on the surface of E. coli did not inhibit the growth of the cell. This is the first report of surface display system using ice nucleation protein, InaA from E. ananas. From this study, this anchoring motif offers an attractive alternative to the current surface display systems.

Keywords: cell surface display, Escherischia coli, ice nucleation protein, xylanase

Procedia PDF Downloads 390
2253 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: alginate, carrageenan, rice bran, rice bran protein

Procedia PDF Downloads 295
2252 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333
2251 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins

Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang

Abstract:

Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.

Keywords: milk protein, bioactive nutrient, interaction, protection

Procedia PDF Downloads 413
2250 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 58
2249 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 324
2248 Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review

Authors: Mandana Hoseini

Abstract:

During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed.

Keywords: immune system, intestine, performance, requirement, threonine

Procedia PDF Downloads 110
2247 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon

Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.

Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon

Procedia PDF Downloads 236
2246 The Effect of the Earthworm (Lumbricus rubellus) as the Source of Protein Feed and Pathogen Antibacterial for Broiler

Authors: Waode Nurmayani, Nikmatul Riswanda

Abstract:

Broilers are chickens which are kept with the most efficient time and hoped get a good body weight. All things are done, for example with the improvement of feed and use antibiotics. Feed cost is the most cost to be spent. Nearly 80% of the cost is spent just for buy feed. Earthworm (Lumbricus rubellus) is a good choice to reduce the cost of feed protein source. The Earthworm has a high crude protein content of about 48.5%-61.9%, rich with proline amino acid about 15% of the 62 amino acids. Not only about protein, this earthworm also has a role in disease prevention. Prevention of disease in livestock usual with use feed supplement. Earthworm (Lumbricus rubellus) is one of the natural materials used as feed. In addition, several types of earthworms that have been known to contain active substances about antibacterial pathogens namely Lumbricus rubellus. The earthworm could be used as an antibiotic because it contain the antibody of Lumbricine active substance. So that, this animal feed from Lumbricus rubellus could improve the performance of broilers. Bioactive of anti-bacterial is called Lumbricine able to inhibit the growth of pathogenic bacteria in the intestinal wall so that the population of pathogenic bacteria is reduced. The method of write in this scientific writing is divided into 3 techniques, namely data completion, data analysis, and thinking pan from various literature about earthworm (Lumbricus rubellus) as broiler feed. It is expected that innovation of feed material of earthworm (Lumbricus rubellus) could reduce the cost of protein feed and the use of chemical antibiotics.

Keywords: earthworm, broiler, protein, antibiotic

Procedia PDF Downloads 158
2245 Apparent Ileal and Excreta Digestibility of Protein Poultry By-Product Meal in 21 to 28 Days of Age Broiler Chicken

Authors: N. Mahmoudnia, M. Khormali

Abstract:

This experiment was conducted to determine the apparent protein digestibility of poultry byproduct meal (PBPM) from two industrial poultry slaughter-houses on Ross 308 male broiler chickens in independent comparisons. The experiment consisted of seven dietary treatments and three replicates per treatment with three broiler chickens per replicate in a completely randomized design. Dietary treatments consisted of a control corn- soybean diet, and levels 3, 6, and 9% PBPM produced by slaughter-house 1 and levels 3, 6, and 9% PBPM produced by slaughter house 2. Chromic oxide was added to the experimental diets as an indigestible marker. The apparent protein digestibility of each diet were determined with two methods of sample collection of ileum and excreta in 21-28 d of age. The results this experiment showed that use of PBPM had no significant effect on the performance of broiler chicks during period of experiments. The apparent protein digestibility of PBPM groups was significantly higher than control group by excreta sampling procedure (P<0.05). Using of PBPM 2 significantly (P<0.05) decreased the apparent protein digestibility values based on ileum sampling procedure vs control (85.21 vs. 90.14).Based results of this experiment,it is possible to use of PBPM 1 in broiler chicken.

Keywords: poultry by-product meal, apparent protein digestibility, independed comparison, broiler chicken

Procedia PDF Downloads 492
2244 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification

Authors: Neway Adele, Adey Feleke

Abstract:

Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.

Keywords: coagulation efficiency, extraction, natural coagulant, protein extract

Procedia PDF Downloads 69
2243 New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin

Authors: Anna Trusek-Holownia, Andrzej Noworyta

Abstract:

Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed.

Keywords: peptide bond hydrolysis, kinetics, enzyme specificity, biologically active peptides

Procedia PDF Downloads 437
2242 Determination of Biomolecular Interactions Using Microscale Thermophoresis

Authors: Lynn Lehmann, Dinorah Leyva, Ana Lazic, Stefan Duhr, Philipp Baaske

Abstract:

Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications.

Keywords: biochemistry, biophysics, molecular interactions, quantitative techniques

Procedia PDF Downloads 527
2241 Effect of Different Processing Methods on the Quality Attributes of Pigeon Pea Used in Bread Production

Authors: B. F. Olanipekun, O. J. Oyelade, C. O. Osemobor

Abstract:

Pigeon pea is a very good source of protein and micronutrient, but it is being underutilized in Nigeria because of several constraints. This research considered the effect of different processing methods on the quality attributes of pigeon pea used in bread production towards enhancing its utility. Pigeon pea was obtained at a local market and processed into the flour using three processing methods: soaking, sprouting and roasting and were used to bake bread in different proportions. Chemical composition and sensory attributes of the breads were thereafter determined. The highest values of protein and ash contents were obtained from 20 % substitution of sprouted pigeon pea in wheat flour and may be attributable to complex biochemical changes occurring during hydration, to invariably lead to protein constituent being broken down. Hydrolytic activities of the enzymes from the sprouted sample resulted in improvement in the constituent of total protein probably due to reduction in the carbohydrate content. Sensory qualities analyses showed that bread produced with soaked and roasted pigeon pea flours at 5 and 10% inclusion, respectively were mostly accepted than other blends, and products with sprouted pigeon pea flour were least accepted. The findings of this research suggest that supplementing wheat flour with sprouted pigeon peas have more nutritional potentials. However, with sensory analysis indices, the soaked and roasted pigeon peas up to 10% are majorly accepted, and also can improve the nutritional status. Overall, this will be very beneficial to population dependent on plant protein in order to combat malnutrition problems.

Keywords: pigeon pea, processing, protein, malnutrition

Procedia PDF Downloads 252