Search results for: processing based on signal identification
32518 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 15332517 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 16332516 Robustness of MIMO-OFDM Schemes for Future Digital TV to Carrier Frequency Offset
Authors: D. Sankara Reddy, T. Kranthi Kumar, K. Sreevani
Abstract:
This paper investigates the impact of carrier frequency offset (CFO) on the performance of different MIMO-OFDM schemes with high spectral efficiency for next generation of terrestrial digital TV. We show that all studied MIMO-OFDM schemes are sensitive to CFO when it is greater than 1% of intercarrier spacing. We show also that the Alamouti scheme is the most sensitive MIMO scheme to CFO.Keywords: modulation and multiplexing (MIMO-OFDM), signal processing for transmission carrier frequency offset, future digital TV, imaging and signal processing
Procedia PDF Downloads 48732515 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 7832514 Digital Recording System Identification Based on Audio File
Authors: Michel Kulhandjian, Dimitris A. Pados
Abstract:
The objective of this work is to develop a theoretical framework for reliable digital recording system identification from digital audio files alone, for forensic purposes. A digital recording system consists of a microphone and a digital sound processing card. We view the cascade as a system of unknown transfer function. We expect same manufacturer and model microphone-sound card combinations to have very similar/near identical transfer functions, bar any unique manufacturing defect. Input voice (or other) signals are modeled as non-stationary processes. The technical problem under consideration becomes blind deconvolution with non-stationary inputs as it manifests itself in the specific application of digital audio recording equipment classification.Keywords: blind system identification, audio fingerprinting, blind deconvolution, blind dereverberation
Procedia PDF Downloads 30432513 Denoising of Motor Unit Action Potential Based on Tunable Band-Pass Filter
Authors: Khalida S. Rijab, Mohammed E. Safi, Ayad A. Ibrahim
Abstract:
When electrical electrodes are mounted on the skin surface of the muscle, a signal is detected when a skeletal muscle undergoes contraction; the signal is known as surface electromyographic signal (EMG). This signal has a noise-like interference pattern resulting from the temporal and spatial summation of action potentials (AP) of all active motor units (MU) near electrode detection. By appropriate processing (Decomposition), the surface EMG signal may be used to give an estimate of motor unit action potential. In this work, a denoising technique is applied to the MUAP signals extracted from the spatial filter (IB2). A set of signals from a non-invasive two-dimensional grid of 16 electrodes from different types of subjects, muscles, and sex are recorded. These signals will acquire noise during recording and detection. A digital fourth order band- pass Butterworth filter is used for denoising, with a tuned band-pass frequency of suitable choice of cutoff frequencies is investigated, with the aim of obtaining a suitable band pass frequency. Results show an improvement of (1-3 dB) in the signal to noise ratio (SNR) have been achieved, relative to the raw spatial filter output signals for all cases that were under investigation. Furthermore, the research’s goal included also estimation and reconstruction of the mean shape of the MUAP.Keywords: EMG, Motor Unit, Digital Filter, Denoising
Procedia PDF Downloads 40132512 IoT Based Information Processing and Computing
Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed
Abstract:
The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.Keywords: IoT, computing, information processing, Iot computing
Procedia PDF Downloads 18832511 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 14332510 Study of Three Channel Electrode Position to Detect Optimum Myoelectric Signal on Five Type Grasp Movement
Authors: Ilham Priadythama, Pringgo Widyo Laksono, Agung Pamungkas
Abstract:
Myoelectric is prosthetic, flexible, and offered industrial application has been highly developed and widely used. Myoelectric hand use myoelectric signal from muscle to activate and control the membrane part of hand. Commonly myoelectric signal is detected on human arm from skin surface. So that it only small magnitude signal captured. Detecting myoelectric signal on the skin surface takes proper and consistent procedure. This paper provides preliminary study of electrodes position which gives best signal strength for five basic grasping. Two-position scenario used to place three channel electrodes set. A bi-potential amplifier based on AD620 used to amplify the signal. Finally, the signal was analyzed using DSSF3 software. From this study, we found that grasp type was stronger using first scenario electrode placement while the rest type better with another scenario.Keywords: myoelectric signal, basic grasp, DSSF3, electrode, bi-potential amplifier
Procedia PDF Downloads 32432509 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 6632508 An Image Processing Scheme for Skin Fungal Disease Identification
Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya
Abstract:
Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification
Procedia PDF Downloads 23132507 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients
Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy
Abstract:
Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards
Procedia PDF Downloads 22132506 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 30232505 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 36732504 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.Keywords: spectrum, interference, telecommunication, cognitive radio, frequency
Procedia PDF Downloads 22432503 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 16032502 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 27132501 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 13132500 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions
Authors: Aneesh Babu, S. P. Anusha
Abstract:
A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors
Procedia PDF Downloads 10632499 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 51132498 Musical Tesla Coil Controlled by an Audio Signal Processed in Matlab
Authors: Sandra Cuenca, Danilo Santana, Anderson Reyes
Abstract:
The following project is based on the manipulation of audio signals through the Matlab software, which has an audio signal that is modified, and its resultant obtained through the auxiliary port of the computer is passed through a signal amplifier whose amplified signal is connected to a tesla coil which has a behavior like a vumeter, the flashes at the output of the tesla coil increase and decrease its intensity depending on the audio signal in the computer and also the voltage source from which it is sent. The amplified signal then passes to the tesla coil being shown in the plasma sphere with the respective flashes; this activation is given through the specified parameters that we want to give in the MATLAB algorithm that contains the digital filters for the manipulation of our audio signal sent to the tesla coil to be displayed in a plasma sphere with flashes of the combination of colors commonly pink and purple that varies according to the tone of the song.Keywords: auxiliary port, tesla coil, vumeter, plasma sphere
Procedia PDF Downloads 9032497 UEMSD Risk Identification: Case Study
Authors: K. Sekulová, M. Šimon
Abstract:
The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification
Procedia PDF Downloads 50032496 Analysis of Interleaving Scheme for Narrowband VoIP System under Pervasive Environment
Authors: Monica Sharma, Harjit Pal Singh, Jasbinder Singh, Manju Bala
Abstract:
In Voice over Internet Protocol (VoIP) system, the speech signal is degraded when passed through the network layers. The speech signal is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss and jitter. The packet loss is the major issue of the degradation in the VoIP signal quality; even a single lost packet may generate audible distortion in the decoded speech signal. In addition to these network degradations, the quality of the speech signal is also affected by the environmental noises and coder distortions. The signal quality of the VoIP system is improved through the interleaving technique. The performance of the system is evaluated for various types of noises at different network conditions. The performance of the enhanced VoIP signal is evaluated using perceptual evaluation of speech quality (PESQ) measurement for narrow band signal.Keywords: VoIP, interleaving, packet loss, packet size, background noise
Procedia PDF Downloads 47932495 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation
Procedia PDF Downloads 73232494 Radio Based Location Detection
Authors: M. Pallikonda Rajasekaran, J. Joshapath, Abhishek Prasad Shaw
Abstract:
Various techniques has been employed to find location such as GPS, GLONASS, Galileo, and Beidou (compass). This paper currently deals with finding location using the existing FM signals that operates between 88-108 MHz. The location can be determined based on the received signal strength of nearby existing FM stations by mapping the signal strength values using trilateration concept. Thus providing security to users data and maintains eco-friendly environment at zero installation cost as this technology already existing FM stations operating in commercial FM band 88-108 MHZ. Along with the signal strength based trilateration it also finds azimuthal angle of the transmitter by employing directional antenna like Yagi-Uda antenna at the receiver side.Keywords: location, existing FM signals, received signal strength, trilateration, security, eco-friendly, direction, privacy, zero installation cost
Procedia PDF Downloads 51932493 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 16032492 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning
Procedia PDF Downloads 13132491 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 32332490 Transient Signal Generator For Fault Indicator Testing
Authors: Mohamed Shaban, Ali Alfallah
Abstract:
This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signalKeywords: signal generator-fault indicator, harmonic signal generator, voltage output
Procedia PDF Downloads 49532489 A Contactless Capacitive Biosensor for Muscle Activity Measurement
Authors: Charn Loong Ng, Mamun Bin Ibne Reaz
Abstract:
As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.Keywords: contactless, capacitive, biosensor, electromyography
Procedia PDF Downloads 450