Search results for: price ethicality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1113

Search results for: price ethicality

1023 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 455
1022 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 215
1021 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies

Authors: Muhammad Siddique, Volodymyr Lugovskyy

Abstract:

This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.

Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies

Procedia PDF Downloads 79
1020 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 141
1019 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid

Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi

Abstract:

Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.

Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer

Procedia PDF Downloads 138
1018 Using Monte Carlo Model for Simulation of Rented Housing in Mashhad, Iran

Authors: Mohammad Rahim Rahnama

Abstract:

The study employs Monte Carlo method for simulation of rented housing in Mashhad second largest city in Iran. A total number of 334 rental residential units in Mashhad, including both apartments and houses (villa), were randomly selected from advertisements placed in Khorasan Newspapers during the months of July and August of 2015. In order to simulate the monthly rent price, the rent index was calculated through combining the mortgage and the rent price. In the next step, the relation between the variables of the floor area and that of the number of bedrooms for each unit, in both apartments and houses(villa), was calculated through multivariate regression using SPSS and was coded in XML. The initial model was called using simulation button in SPSS and was simulated using triangular and binominal algorithms. The findings revealed that the average simulated rental index was 548.5$ per month. Calculating the sensitivity of rental index to a number of bedrooms we found that firstly, 97% of units have three bedrooms, and secondly as the number of bedrooms increases from one to three, for the rent price of less than 200$, the percentage of units having one bedroom decreases from 10% to 0. Contrariwise, for units with the rent price of more than 571.4$, the percentage of bedrooms increases from 37% to 48%. In the light of these findings, it becomes clear that planning to build rental residential units, overseeing the rent prices, and granting subsidies to rental residential units, for apartments with two bedrooms, present a felicitous policy for regulating residential units in Mashhad.

Keywords: Mashhad, Monte Carlo, simulation, rent price, residential unit

Procedia PDF Downloads 275
1017 Reexamining Contrarian Trades as a Proxy of Informed Trades: Evidence from China's Stock Market

Authors: Dongqi Sun, Juan Tao, Yingying Wu

Abstract:

This paper reexamines the appropriateness of contrarian trades as a proxy of informed trades, using high frequency Chinese stock data. Employing this measure for 5 minute intervals, a U-shaped intraday pattern of probability of informed trades (PIN) is found for the CSI300 stocks, which is consistent with previous findings for other markets. However, while dividing the trades into different sizes, a reversed U-shaped PIN from large-sized trades, opposed to the U-shaped pattern for small- and medium-sized trades, is observed. Drawing from the mixed evidence with different trade sizes, the price impact of trades is further investigated. By examining the relationship between trade imbalances and unexpected returns, larges-sized trades are found to have significant price impact. This implies that in those intervals with large trades, it is non-contrarian trades that are more likely to be informed trades. Taking account of the price impact of large-sized trades, non-contrarian trades are used to proxy for informed trading in those intervals with large trades, and contrarian trades are still used to measure informed trading in other intervals. A stronger U-shaped PIN is demonstrated from this modification. Auto-correlation and information advantage tests for robustness also support the modified informed trading measure.

Keywords: contrarian trades, informed trading, price impact, trade imbalance

Procedia PDF Downloads 165
1016 Mathematical Model and Algorithm for the Berth and Yard Resource Allocation at Seaports

Authors: Ming Liu, Zhihui Sun, Xiaoning Zhang

Abstract:

This paper studies a deterministic container transportation problem, jointly optimizing the berth allocation, quay crane assignment and yard storage allocation at container ports. The problem is formulated as an integer program to coordinate the decisions. Because of the large scale, it is then transformed into a set partitioning formulation, and a framework of branchand- price algorithm is provided to solve it.

Keywords: branch-and-price, container terminal, joint scheduling, maritime logistics

Procedia PDF Downloads 293
1015 Revisiting the Impact of Oil Price on Trade Deficit of Pakistan: Evidence from Nonlinear Auto-Regressive Distributed Lag Model and Asymmetric Multipliers

Authors: Qaiser Munir, Hamid Hussain

Abstract:

Oil prices are believed to have a major impact on several economic indicators, leading to several instances where a comparison between oil prices and a trade deficit of oil-importing countries have been carried out. Building upon the narrative, this paper sheds light on the ongoing debate by inquiring upon the possibility of asymmetric linkages between oil prices, industrial production, exchange rate, whole price index, and trade deficit. The analytical tool used to further understand the complexities of a recent approach called nonlinear auto-regressive distributed lag model (NARDL) is utilised. Our results suggest that there are significant asymmetric effects among the main variables of interest. Further, our findings indicate that any variation in oil prices, industrial production, exchange rate, and whole price index on trade deficit tend to fluctuate in the long run. Moreover, the long-run picture denotes that increased oil price leads to a negative impact on the trade deficit, which, in its true essence, is a disproportionate impact. In addition to this, the Wald test simultaneously conducted concludes the absence of any significant evidence of the asymmetry in the oil prices impact on the trade balance in the short-run.

Keywords: trade deficit, oil prices, developing economy, NARDL

Procedia PDF Downloads 133
1014 A Multivariate Analysis of Patent Price Variations in the Emerging United States Patent Auction Market: Role of Patent, Seller, and Bundling Related Characteristics

Authors: Pratheeba Subramanian, Anjula Gurtoo, Mary Mathew

Abstract:

Transaction of patents in emerging patent markets is gaining momentum. Pricing patents for a transaction say patent sale remains a challenge. Patents vary in their pricing with some patents fetching higher prices than others. Sale of patents in portfolios further complicates pricing with multiple patents playing a role in pricing a bundle. In this paper, a set of 138 US patents sold individually as single invention lots and 462 US patents sold in bundles of 120 portfolios are investigated to understand the dynamics of selling prices of singletons and portfolios and their determinants. Firstly, price variations when patents are sold individually as singletons and portfolios are studied. Multivariate statistical techniques are used for analysis both at the lot level as well as at the individual patent level. The results show portfolios fetching higher prices than singletons at the lot level. However, at the individual patent level singletons show higher prices than per patent price of individual patent members within the portfolio. Secondly, to understand the price determinants, the effect of patent, seller, and bundling related characteristics on selling prices is studied separately for singletons and portfolios. The results show differences in the set of characteristics determining prices of singletons and portfolios. Selling prices of singletons are found to be dependent on the patent related characteristics, unlike portfolios whose prices are found to be dependent on all three aspects – patent, seller, and bundling. The specific patent, seller and bundling characteristics influencing selling price are discussed along with the implications.

Keywords: auction, patents, portfolio bundling, seller type, selling price, singleton

Procedia PDF Downloads 328
1013 Techno-Economic Study on the Potential of Dimethyl Ether (DME) as a Substitute for LPG

Authors: Widya Anggraini Pamungkas, Rosana Budi Setyawati, Awaludin Fitroh Rifai, Candra Pangesti Setiawan, Anatta Wahyu Budiiman, Inayati, Joko Waluyo, Sunu Herwi Pranolo

Abstract:

The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the Covid-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels as a substitute or which aims to substitute LPG; one of the materials that can be used is Dimethyl Ether (DME). Dimethyl ether (DME) is an organic compound with the chemical formula CH 3. OCH 3 has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources, such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% IRR, coal has the largest NPV of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and a payback period of 5.16. the latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are not only because it is profitable, namely: low price and abundant resources, but has high greenhouse gas emissions.

Keywords: LPG, DME, coal, biomass, natural gas

Procedia PDF Downloads 124
1012 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 548
1011 Development and Emerging Risks in the Derivative Market: A Comparison of Impact of Futures Trading on Spot Price Volatility and a Case of Developed, Emerging and Less Developed Economies

Authors: Rancy Chepchirchir Kosgey, John Olukuru

Abstract:

This study examines the impact of introduction of futures trading on the spot price volatility in the commodity market. The paper considers the United States of America, South Africa and Ethiopian economies. Three commodities i.e. coffee, maize and wheat from New York Merchantile Exchange, South African Futures Exchange and Ethiopian Commodity Exchange are analyzed. ARCH LM test is used to check for heteroskedasticity and GARCH and EGARCH are used to check for the behavior of volatility between the pre- and post-futures periods. For all the three economies, the results indicate presence of the ARCH effect in the log returns. For conditional and unconditional variances; spot price volatility for coffee has decreased after futures trading in all the economies and the EGARCH has also shown reduction in persistence of volatility in the post-futures period in the three economies; while that of maize has reduced for the Ethiopian economy while there has been an increase in both the US and South African economies. For wheat, the conditional variance has been found to rise in the post-futures period in all the three economies.

Keywords: derivatives, futures exchange, agricultural commodities, spot price volatility

Procedia PDF Downloads 426
1010 Potentials and Influencing Factors of Dynamic Pricing in Business: Empirical Insights of European Experts

Authors: Christopher Reichstein, Ralf-Christian Härting, Martina Häußler

Abstract:

With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structural equation modeling approach show five main drivers increasing the potential of dynamic price settings in the E-Commerce. Influencing factors are the knowledge of customers’ individual willingness to pay, rising sales, the possibility of customization, the data volume and the information about competitors’ pricing strategy.

Keywords: e-commerce, empirical research, experts, dynamic pricing (DP), influencing factors, potentials

Procedia PDF Downloads 261
1009 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 337
1008 Stock Price Prediction with 'Earnings' Conference Call Sentiment

Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu

Abstract:

Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.

Keywords: earnings call script, random forest, sentiment analysis, stock price prediction

Procedia PDF Downloads 292
1007 Money and Inflation in Cambodia

Authors: Siphat Lim

Abstract:

The result of the study revealed that the interaction between money, exchange rate, and price level was mainly derived from the policy-induced by the central bank. Furthermore, the variation of inflation was explained weakly by exchange rate and money supply. In the period of twelfth-month, the variation of inflation which caused by exchange rate and money supply were not more than 1.78 percent and 9.77 percent, respectively.

Keywords: money supply, exchange rate, price level, VAR model

Procedia PDF Downloads 287
1006 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 400
1005 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs

Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo

Abstract:

In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.

Keywords: auction, aggregation, fair, group buying, social buying

Procedia PDF Downloads 294
1004 Co-Integration and Error Correction Mechanism of Supply Response of Sugarcane in Pakistan (1980-2012)

Authors: Himayatullah Khan

Abstract:

This study estimates supply response function of sugarcane in Pakistan from 1980-81 to 2012-13. The study uses co-integration approach and error correction mechanism. Sugarcane production, area and price series were tested for unit root using Augmented Dickey Fuller (ADF). The study found that these series were stationary at their first differenced level. Using the Augmented Engle-Granger test and Cointegrating Regression Durbin-Watson (CRDW) test, the study found that “production and price” and “area and price” were co-integrated suggesting that the two sets of time series had long-run or equilibrium relationship. The results of the error correction models for the two sets of series showed that there was disequilibrium in the short run there may be disequilibrium. The Engle-Granger residual may be thought of as the equilibrium error which can be used to tie the short-run behavior of the dependent variable to its long-run value. The Granger-Causality test results showed that log of price granger caused both the long of production and log of area whereas, the log of production and log of area Granger caused each other.

Keywords: co-integration, error correction mechanism, Granger-causality, sugarcane, supply response

Procedia PDF Downloads 435
1003 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
1002 An Empirical Analysis of the Effects of Corporate Derivatives Use on the Underlying Stock Price Exposure: South African Evidence

Authors: Edson Vengesai

Abstract:

Derivative products have become essential instruments in portfolio diversification, price discovery, and, most importantly, risk hedging. Derivatives are complex instruments; their valuation, volatility implications, and real impact on the underlying assets' behaviour are not well understood. Little is documented empirically, with conflicting conclusions on how these instruments affect firm risk exposures. Given the growing interest in using derivatives in risk management and portfolio engineering, this study examines the practical impact of derivative usage on the underlying stock price exposure and systematic risk. The paper uses data from South African listed firms. The study employs GARCH models to understand the effect of derivative uses on conditional stock volatility. The GMM models are used to estimate the effect of derivatives use on stocks' systematic risk as measured by Beta and on the total risk of stocks as measured by the standard deviation of returns. The results provide evidence on whether derivatives use is instrumental in reducing stock returns' systematic and total risk. The results are subjected to numerous controls for robustness, including financial leverage, firm size, growth opportunities, and macroeconomic effects.

Keywords: derivatives use, hedging, volatility, stock price exposure

Procedia PDF Downloads 108
1001 Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

Authors: Zhaojun Wang, Zongdi Sun, Yongjie Chen, Manman Chen, Linghui Wang

Abstract:

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Keywords: analytic hierarchy process, grain yield, grain sown area, minimum grain purchase price

Procedia PDF Downloads 140
1000 Customer Satisfaction and Retention Strategies in Marketing

Authors: Hassan Adedoyin Rasaq

Abstract:

The marketing efforts of the present day business is not just geared towards meeting the consumer’s needs at a price, but ensuring good customer satisfaction, and strategizing on how to retain such customers. Customer satisfaction and retention is achievable through the co-ordination of the marketing mixes; Product, Price, Promotion and Place; Relationship Marketing; After-Sales Service; Rebates/Discounts/Price reduction policy and Total Quality Management (TQM). A first-hand customer, If well satisfied, will become a company’s repeat customer, proceeds to become a client and goes further to become an advocate of the company by applauding the company’s products/services and encouraging others to buy from it. It is the objective of this paper, therefore, to guide business organizations on how to enhance customer satisfaction, and retain existing customers as a means of long-term survival in marketing. The responses of 72 randomly selected Marketing personnel spread across three (3) food and beverage companies in Nigeria were analyzed. One hypothesis was tested using a one-way analysis of variance (ANOVA) statistical tool, and it was discovered that Relationship marketing contributed to organizational profitability and growth.

Keywords: customer satisfaction, retention strategies, marketing, marketing mixes

Procedia PDF Downloads 552
999 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 251
998 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices

Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe

Abstract:

An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.

Keywords: electricity prices, realized volatility, semivariances, volatility spillovers

Procedia PDF Downloads 175
997 Red Meat Price Volatility and Its' Relationship with Crude Oil and Exchange Rate

Authors: Melek Akay

Abstract:

Turkey's agricultural commodity prices are prone to fluctuation but have gradually over time. A considerable amount of literature examines the changes in these prices by dealing with other commodities such as energy. Links between agricultural and energy markets have therefore been extensively investigated. Since red meat prices are becoming increasingly volatile in Turkey, this paper analyses the price volatility of veal, lamb and the relationship between red meat and crude oil, exchange rates by applying the generalize all period unconstraint volatility model, which generalises the GARCH (p, q) model for analysing weekly data covering a period of May 2006 to February 2017. Empirical results show that veal and lamb prices present volatility during the last decade, but particularly between 2009 and 2012. Moreover, oil prices have a significant effect on veal and lamb prices as well as their previous periods. Consequently, our research can lead policy makers to evaluate policy implementation in the appropriate way and reduce the impacts of oil prices by supporting producers.

Keywords: red meat price, volatility, crude oil, exchange rates, GARCH models, Turkey

Procedia PDF Downloads 122
996 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan

Authors: Lubna Naz, Munir Ahmad, G. M. Arif

Abstract:

This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.

Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation

Procedia PDF Downloads 364
995 The Impact of Public Open Space System on Housing Price in Chicago

Authors: Si Chen, Le Zhang, Xian He

Abstract:

The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.

Keywords: hedonic model, public open space, housing sale price, regression analysis, accessibility score

Procedia PDF Downloads 133
994 Distributional and Dynamic impact of Energy Subsidy Reform

Authors: Ali Hojati Najafabadi, Mohamad Hosein Rahmati, Seyed Ali Madanizadeh

Abstract:

Governments execute energy subsidy reforms by either increasing energy prices or reducing energy price dispersion. These policies make less use of energy per plant (intensive margin), vary the total number of firms (extensive margin), promote technological progress (technology channel), and make additional resources to redistribute (resource channel). We estimate a structural dynamic firm model with endogenous technology adaptation using data from the manufacturing firms in Iran and a country ranked the second-largest energy subsidy plan by the IMF. The findings show significant dynamics and distributional effects due to an energy reform plan. The price elasticity of energy consumption in the industrial sector is about -2.34, while it is -3.98 for large firms. The dispersion elasticity, defined as the amounts of changes in energy consumption by a one-percent reduction in the standard error of energy price distribution, is about 1.43, suggesting significant room for a distributional policy. We show that the intensive margin is the main driver of energy price elasticity, whereas the other channels mostly offset it. In contrast, the labor response is mainly through the extensive margin. Total factor productivity slightly improves in light of the reduction in energy consumption if, at the same time, the redistribution policy boosts the aggregate demands.

Keywords: energy reform, firm dynamics, structural estimation, subsidy policy

Procedia PDF Downloads 95