Search results for: multienzymatic reaction
2358 Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins
Authors: Adil A. Mohammed, Seif-Eddeen K. Fateen, Tamer S. Ahmed, Tarek M. Moustafa
Abstract:
Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value.Keywords: falling film, oligomerization, comsol mutiphysics, linear alpha olefins
Procedia PDF Downloads 4682357 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 2002356 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test
Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad
Abstract:
The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively.Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade
Procedia PDF Downloads 2472355 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor
Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu
Abstract:
Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling
Procedia PDF Downloads 2122354 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst
Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka
Abstract:
The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface
Procedia PDF Downloads 822353 Effect of Ultrasound on the Hydrolysis of Soy Oil Catalyzed by 1,3-Specific Lipase Abstract
Authors: Jamal Abd Awadallak, Thiago Olinek Reinehr, Eduardo Raizer, Deise Molinari, Edson Antonio, Camila da Silva da Silva
Abstract:
The hydrolysis of soy oil catalyzed by 1,3-specific enzyme (Lecitase Ultra) in a well-stirred bioreactor was studied. Two forms of applications of the ultrasound were evaluated aiming to increase reaction rates, wherein the use of probe ultrasound associated with the use of surfactant to pre-emulsify the substrate showed the best results. Two different reaction periods were found: the first where the ultrasound has great influence on reaction rates, and the second where ultrasound influence is minimal. Studies on the time of pre-emulsification, surfactant concentration and enzyme concentration showed that the initial rate of hydrolysis depends on the interfacial area between the oil phase and the aqueous phase containing the enzyme.Keywords: specific enzyme, free fatty acids, Hydrolysis, lecitase ultra, ultrasound
Procedia PDF Downloads 5772352 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions
Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu
Abstract:
In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.Keywords: Chevreul's salt, factorial experimental design method, ammonium chloride, dissolution, optimization
Procedia PDF Downloads 2452351 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics
Authors: Haseen Siddiqui, Sanjay M. Mahajani
Abstract:
Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model
Procedia PDF Downloads 1362350 CuFeOx-Based Nano-Rose Electrocatalysts for Oxygen Evolution Reaction
Authors: Hamad Almohamadi, Nabeel H. Alharthi, Abdulrahman Aljabri
Abstract:
In this study, two-dimensional CuFeOx is deposited on nickel foam for the fabrication of electrocatalyst for oxygen evolution reaction (OER). The in-situ hydrothermal synthesis of CuFeOx in presence of aloe vera extract was found to yield unique nano-rose-like morphology which aided to improve the electrochemical surface area of the electrode. The phytochemical assisted synthesis of CuFeOx using 75% aloe vera extract resulted in improved OER electrocatalytic performance by attaining the overpotential of 310 mV for 50 mA cm−2 and 410 mV for 100 mA cm−2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, thus proving to be prospective electrode material for efficient OER in electrochemical water splitting.Keywords: water splitting, phytochemicals, oxygen evaluation reaction, Tafel's slope, stability
Procedia PDF Downloads 1152349 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism
Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe
Abstract:
Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion
Procedia PDF Downloads 2722348 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 2992347 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5
Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li
Abstract:
The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide
Procedia PDF Downloads 1832346 Efficient Ni(II)-Containing Layered Triple Hydroxide-Based Catalysts: Synthesis, Characterisation and Their Role in the Heck Reaction
Authors: Gabor Varga, Krisztina Karadi, Zoltan Konya, Akos Kukovecz, Pal Sipos, Istvan Palinko
Abstract:
Nickel can efficiently replace palladium in the Heck, Suzuki and Negishi reactions. This study focuses on the synthesis and catalytic application of Ni(II)-containing layered double hydroxides (LDHs) and layered triple hydroxides (LTHs). Our goals were to incorporate Ni(II) ions among the layers of LDHs or LTHs, or binding it to their surface or building it into their layers in such a way that their catalytic activities are maintained or even increased. The LDHs and LTHs were prepared by the co-precipitation method using ethylene glycol as co-solvent. In several cases, post-synthetic modifications (e.g., thermal treatment) were performed. After optimizing the synthesis conditions, the composites displayed good crystallinity and were free of byproducts. The success of the syntheses and the post-synthetic modifications was confirmed by relevant characterization methods (XRD, SEM, SEM-EDX and combined IR techniques). Catalytic activities of the produced and well-characterized solids were investigated through the Heck reaction. The composites behaved as efficient, recyclable catalysts in the Heck reaction between 4-bromoanisole and styrene. Through varying the reaction parameters, we were able to obtain acceptable conversions under mild conditions. Our study highlights the possibility of the application of Ni(II)-containing composites as efficient catalysts in coupling reactions.Keywords: layered double hydroxide, layered triple hydroxide, heterogeneous catalysis, heck reaction
Procedia PDF Downloads 1732345 Radiative Reactions Analysis at the Range of Astrophysical Energies
Authors: A. Amar
Abstract:
Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction
Procedia PDF Downloads 2062344 The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates
Authors: E. Moroydor Derun, N. Tugrul, F. T. Senberber, A. S. Kipcak, S. Piskin
Abstract:
In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80°C reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.Keywords: hydrothermal synthesis, copper borates, copper sulfate, tincalconite
Procedia PDF Downloads 3812343 Can We Meet the New Challenges of NonIsocyanates Polyurethanes (NIPU) towards NIPU Foams?
Authors: Adrien Cornille, Marine Blain, Bernard Boutevin, Sylvain Caillol
Abstract:
Generally, linear polyurethanes (PUs) are obtained by the reaction between an oligomeric diol, a short diol as chain extender and a diisocyanate. However the use of diisocyanate should be avoided since they are generally very harmful for human health. Therefore the synthesis of NIPUs (non isocyanate PUs) from step growth polymerization of dicyclocarbonates and diamines should be favoured. This method is particularly interesting since no hazardous isocyanates are used. Thus, this reaction, extensively studied by Endo et al. is currently gaining a lot of attention as a substitution route for the synthesis of NIPUs, both from industrial and academic community. However, the reactivity of reaction between amine and cyclic carbonate is a major scientific issue, since cyclic carbonates are poorly reactive. Thus, our team developed several synthetic ways for the synthesis of various di-cyclic carbonates based on C5-, C6- and dithio- cyclic carbonates, from different biobased raw materials (glycerin isosorbide, vegetable oils…). These monomers were used to synthesize NIPUs with various mechanical and thermal properties for various applications. We studied the reactivity of reaction with various catalysts and find optimized conditions for room temperature reaction. We also studied the radical copolymerization of cyclic carbonate monomers in styrene-acrylate copolymers for coating applications. We also succeeded in the elaboration of biobased NIPU flexible foams. To the best of our knowledge, there is no report in literature on the preparation of non-isocyanate polyurethane foams.Keywords: foam, nonisocyanate polyurethane, cyclic carbonate, blowing agent, scanning electron microscopy
Procedia PDF Downloads 2292342 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor
Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato
Abstract:
Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification
Procedia PDF Downloads 3832341 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts
Authors: Yongde Xia, Laicong Deng, Zhuxian Yang
Abstract:
Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction
Procedia PDF Downloads 492340 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons
Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole
Abstract:
Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8
Procedia PDF Downloads 1712339 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions
Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban
Abstract:
The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics
Procedia PDF Downloads 4082338 Asymmetric Synthesis of Catalponol Using Chiral Iridium Catalyst
Authors: Takeyuki Suzuki, Ismiyarto, Da-Yang Zhou, Kaori Asano, Hiroaki Sasai
Abstract:
The development of catalytic asymmetric reaction is important for the synthesis of natural products. To construct the multiple stereogenic centers, the desymmetrization of meso compounds is powerful strategy for the synthesis of chiral molecules. Oxidative desymmetrization of meso diols using chiral iridium catalyst provides a chiral hydroxyl ketone. The reaction is practical and an environmentally benign method which does not require the use of stoichiometric amount of heavy metals. This time we report here catalytic asymmetric synthesis of catalponol based on tandem coupling of meso-diols and an aldehyde. The tandem reaction includes oxidative desymmetrization of meso-diols, aldol condensation with an aldehyde. The reaction of meso-diol, benzaldehyde in the presence of a catalytic amount of chiral Ir complex and CsOH in tetrahydrofuran afforded the desired benzylidene ketone in 82% yield with 96% ee (enantiomeric excess). Next, we applied this benzylidene ketone derivative to the synthesis of catalponol. The corresponding benzylidene ketone was obtained in 87% yield with 99% ee. Finally, catalponol was synthesized by the regio- and stereo-selective reduction of dienone moiety in good yield.Keywords: catalponol, desymmetrization, iridium, oxidation
Procedia PDF Downloads 1692337 HCIO4-SiO2 Nanoparticles as an Efficient Catalyst for Three-Component Synthesis of Triazolo[1,2-A]Indazole-Triones
Authors: Hossein Anaraki-Ardakani, Tayebe Heidari-Rakati
Abstract:
An environmentally benign protocol for the one-pot, three-component synthesis of Triazolo[1,2-a]indazole-1,3,8-trione derivatives by condensation of dimedone, urazole and aromatic aldehydes catalyzed by HClO4/SiO2 NPS as an ecofriendly catalyst with high catalytic activity and reusability at 100 ºC under solvent-free conditions is reported. The reaction proceeds to completion within 20-30 min in 77-86 % yield.Keywords: one-pot reaction, dimedone, triazoloindazole, urazole
Procedia PDF Downloads 3712336 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study
Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das
Abstract:
Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.Keywords: aldol reaction, DFT, organocatalysis, transition structure
Procedia PDF Downloads 4322335 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties
Authors: Parikshit Gogo, N. N. Dutta
Abstract:
The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.Keywords: laccase, catechin, conjugation reaction, antioxidant properties
Procedia PDF Downloads 2692334 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies
Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan
Abstract:
This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform
Procedia PDF Downloads 4032333 Effect of Addition and Reduction of Sharia Index Constituents
Authors: Rosyidah, Permata Wulandari
Abstract:
We investigate the price effect of addition and deletions from the Indonesia Sharia Stock Index (ISSI) and Jakarta Islamic Index (JII). Using event study methodology, we measure abnormal returns for firms over the period June 2019 - to December 2021. Through the sample of 107 additions and 95 deletions, we find evidence to support the theory of Muslim country investment behavior. We find that additions to the Islamic index led to a significant positive stock market reaction and deletions to the Islamic index led to a negative stock market reaction on Jakarta Islamic Index (JII) and there is no significant reaction of addition and deletion on Indonesia Sharia Stock Index (ISSI).Keywords: abnormal return, abnormal volume, event study, index changes, sharia index
Procedia PDF Downloads 1292332 Finding the Reaction Constant between Humic Acid and Aluminum Ion by Fluorescence Quenching Effect
Authors: Wen Po Cheng, Chen Zhao Feng, Ruey Fang Yu, Lin Jia Jun, Lin Ji Ye, Chen Yuan Wei
Abstract:
Humic acid was used as the removal target for evaluating the coagulation efficiency in this study. When the coagulant ions mix with a humic acid solution, a Fluorescence quenching effect may be observed conditionally. This effect can be described by Stern-Volmer linear equation which can be used for quantifying the quenching value (Kq) of the Fluorescence quenching effect. In addition, a Complex-Formation Titration (CFT) theory was conducted and the result was used to explain the electron-neutralization capability of the coagulant (AlCl₃) at different pH. The results indicated that when pH of the ACl₃ solution was between 6 and 8, fluorescence quenching effect obviously occurred. The maximum Kq value was found to be 102,524 at pH 6. It means that the higher the Kq value is, the better complex reaction between a humic acid and aluminum salts will be. Through the Kq value study, the optimum pH can be quantified when the humic acid solution is coagulated with aluminum ions.Keywords: humic acid, fluorescence quenching effect, complex reaction, titration
Procedia PDF Downloads 5772331 Lexical Knowledge of Verb Particle Constructions with the Particle on by Mexican English Learners
Authors: Sarai Alvarado Pineda, Ricardo Maldonado Soto
Abstract:
The acquisition of Verb Particle Constructions is a challenge for Spanish speakers learning English. The acquisition is particularly difficult for speakers of languages with no verb particle constructions. The purpose of the current study is to define the procedural steps in the acquisition of constructions with the particle on. There are three outstanding meanings for the particle on; Surface: The movie is based on a true story, Activation: John turn on the light, Continuity: The band played on all night. The central aim of this study is to measure how Mexican Spanish participants respond to both the three meanings mentioned above and the degree of meaning transparency/opacity of on verb particle constructions. Forty Mexican Spanish learners of English (20 basic and 20 advanced) are compared against a control group of 20 American native English speakers through a reaction time test (PsychoPy2 2015). The participants were asked to discriminate 90 items based on their knowledge of these constructions. There are 30 items per meaning divided into two groups of transparent and opaque meaning. Results revealed three major findings: Advanced students have a reaction time similar to that of native speakers (advanced 4.5s versus native 3.7s), while students with a lower level of English proficiency, show a high reaction time (7s). Likewise, there is a shorter reaction time in constructions with lower opacity in the three groups of participants, with differences between each level (basic 6.7s, advanced 4.3s, and native 3.4s). Finally, a difference in reaction time can be identified according to the meaning provided by the construction. The reaction time for the activation category (5.27s) is greater than continuity (5.04s), and this category is also slower than the surface (4.94s). The study shows that the level of sensitivity of English learners increases significantly aiming towards native speaker patterns as determined by the level of transparency of meaning of each construction as well as the degree of entrenchment of each constructional meaning.Keywords: meaning of the particle, opacity, reaction time, verb particle constructions
Procedia PDF Downloads 2642330 A Detailed Computational Investigation into Copper Catalyzed Sonogashira Coupling Reaction
Authors: C. Rajalakshmi, Vibin Ipe Thomas
Abstract:
Sonogashira coupling reactions are widely employed in the synthesis of molecules of biological and pharmaceutical importance. Copper catalyzed Sonogashira coupling reactions are gaining importance owing to the low cost and less toxicity of copper as compared to the palladium catalyst. In the present work, a detailed computational study has been carried out on the Sonogashira coupling reaction between aryl halides and terminal alkynes catalyzed by Copper (I) species with trans-1, 2 Diaminocyclohexane as ligand. All calculations are performed at Density Functional Theory (DFT) level, using the hybrid Becke3LYP functional. Cu and I atoms are described using an effective core potential (LANL2DZ) for the inner electrons and its associated double-ζ basis set for the outer electrons. For all other atoms, 6-311G+* basis set is used. We have identified that the active catalyst species is a neutral 3-coordinate trans-1,2 diaminocyclohexane ligated Cu (I) alkyne complex and found that the oxidative addition and reductive elimination occurs in a single step proceeding through one transition state. This is owing to the ease of reductive elimination involving coupling of Csp2-Csp carbon atoms and the less stable Cu (III) intermediate. This shows the mechanism of copper catalyzed Sonogashira coupling reactions are quite different from those catalyzed by palladium. To gain further insights into the mechanism, substrates containing various functional groups are considered in our study to traverse their effect on the feasibility of the reaction. We have also explored the effect of ligand on the catalytic cycle of the coupling reaction. The theoretical results obtained are in good agreement with the experimental observation. This shows the relevance of a combined theoretical and experimental approach for rationally improving the cross-coupling reaction mechanisms.Keywords: copper catalysed, density functional theory, reaction mechanism, Sonogashira coupling
Procedia PDF Downloads 1152329 Electro-oxidation of Catechol in the Presence of Nicotinamide at Different pH
Authors: M. A. Motin, M. A. Aziz, M. Hafiz Mia, M. A. Hasem
Abstract:
The redox behavior of catechol in the presence of nicotinamide as nucleophiles has been studied in aqueous solution with various pH values and different concentration of nicotinamide using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in buffer solution (3.00 < pH < 9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o-benzoquinone and vice versa within a quasi reversible two electron transfer process. Cyclic voltammogram of catechol in the presence of nicotinamide in buffer solution of pH 7, show one anodic peak in the first cycle of potential and on the reverse scan the corresponding cathodic peak slowly decreases and new peak is observed at less positive potential. In the second cycle of potential a new anodic peak is observed at less positive potential. This indicates that nicotinamide attached with catechol and formed adduct after first cycle of oxidation. The effect of pH of catechol in presence of nicotinamide was studied by varying pH from 3 to 11. The substitution reaction of catechol with nicotimamide is facilitated at pH 7. In buffer solution of higher pH (>9), the CV shows different pattern. The effect of concentration of nicotinamide was studied by 2mM to 100 mM. The maximum substitution reaction has been found for 50 mM of nicotinamide and of pH 7. The proportionality of the first scan anodic and cathodic peak currents with square root of scan rate suggests that the peak current of the species at each redox reaction is controlled by diffusion process. The current functions (1/v-1/2) of the anodic peak decreased with the increasing of scan rate demonstrated that the behavior of the substitution reaction is of ECE type.Keywords: redox interaction, catechol, nicotinamide, substituion reaction, pH effect
Procedia PDF Downloads 468