Search results for: metal oxide surge arrester (MOSA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3766

Search results for: metal oxide surge arrester (MOSA)

3676 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 98
3675 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 79
3674 Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide

Authors: Roya Razavizadeh, Razieh Soltaninejad, Hakimeh Oloumi

Abstract:

Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites.

Keywords: zinc oxide, copper oxide, phenolic compounds, licorice (glycyrrhiza glabra L.), glycyrrhizin

Procedia PDF Downloads 470
3673 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 277
3672 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 240
3671 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation

Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh

Abstract:

This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application.

Keywords: dewetting, themal annealing, metal, melting point, porous

Procedia PDF Downloads 658
3670 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 162
3669 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 178
3668 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 174
3667 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 91
3666 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 342
3665 Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures

Authors: Jinjoo Jung, Hayeon Won, Doyeong Jeong, Do Hyung Kim

Abstract:

We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated.

Keywords: electrochemical, electrochromic, tungsten oxide, tungsten-molybdenum oxide

Procedia PDF Downloads 590
3664 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 145
3663 Study of Porous Metallic Support for Intermediate-Temperature Solid Oxide Fuel Cells

Authors: S. Belakry, D. Fasquelle, A. Rolle, E. Capoen, R. N. Vannier, J. C. Carru

Abstract:

Solid oxide fuel cells (SOFCs) are promising devices for energy conversion due to their high electrical efficiency and eco-friendly behavior. Their performance is not only influenced by the microstructural and electrical properties of the electrodes and electrolyte but also depends on the interactions at the interfaces. Nowadays, commercial SOFCs are electrically efficient at high operating temperatures, typically between 800 and 1000 °C, which restricts their real-life applications. The present work deals with the objectives to reduce the operating temperature and to develop cost-effective intermediate-temperature solid oxide fuel cells (IT-SOFCs). This work focuses on the development of metal-supported solid oxide fuel cells (MS-IT-SOFCs) that would provide cheaper SOFC cells with increased lifetime and reduced operating temperature. In the framework, the local company TIBTECH brings its skills for the manufacturing of porous metal supports. This part of the work focuses on the physical, chemical, and electrical characterizations of porous metallic supports (stainless steel 316 L and FeCrAl alloy) under different exposure conditions of temperature and atmosphere by studying oxidation, mechanical resistance, and electrical conductivity of the materials. Within the target operating temperature (i.e., 500 to 700 ° C), the stainless steel 316 L and FeCrAl alloy slightly oxidize in the air and H2, but don’t deform; whereas under Ar atmosphere, they oxidize more than with previously mentioned atmospheres. Above 700 °C under air and Ar, the two metallic supports undergo high oxidation. From 500 to 700 °C, the resistivity of FeCrAl increases by 55%. But nevertheless, the FeCrAl resistivity increases more slowly than the stainless steel 316L resistivity. This study allows us to verify the compatibility of electrodes and electrolyte materials with metallic support at the operating requirements of the IT-SOFC cell. The characterizations made in this context will also allow us to choose the most suitable fabrication process for all functional layers in order to limit the oxidation of the metallic supports.

Keywords: stainless steel 316L, FeCrAl alloy, solid oxide fuel cells, porous metallic support

Procedia PDF Downloads 94
3662 Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors

Authors: Mohammad Alenezi

Abstract:

Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures.

Keywords: metal oxide, nanostructure, hydrothermal, sensor

Procedia PDF Downloads 272
3661 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 167
3660 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 107
3659 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 141
3658 Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect.

Keywords: SOI technology, PDSOI MOSFET, FDSOI MOSFET, kink effect

Procedia PDF Downloads 258
3657 The Transport of Coexisting Nanoscale Zinc Oxide Particles, Cu(Ⅱ) and Cr(Ⅵ) Ions in Simulated Landfill Leachate

Authors: Xiaoyu Li, Wenchuan Ding, Yujia Yia

Abstract:

As the nanoscale zinc oxide particles (nano-ZnO) accumulate in the landfill, nano-ZnO will enter the landfill leachate and come into contact with the heavy metal ions in leachate, which will change their transport process in the landfill and, furthermore, affect each other's environmental fate and toxicity. In this study, we explored the transport of co-existing nano-ZnO, Cu(II) and Cr(VI) ions by column experiments under different stages of landfill leachate conditions (flow rate, pH, ionic strength, humic acid). The results show that Cu(II) inhibits the transport of nano-ZnO in the quartz sand column by increasing the surface potential of nano-ZnO, and nano-ZnO increases the retention of Cu(II) in the quartz sand column by adsorbing Cu(II) ions. Cr(VI) promotes the transport of nano-ZnO in the quartz sand column by neutralizing the surface potential of the nano-ZnO which reduces electrostatic attraction between nZnO and quartz sand, but the nano-ZnO has no effect on the transport of Cr(VI). The nature of landfill leachates such as flow rate, pH, ionic strength (IS) and humic acid (HA) has a certain effect on the transport of coexisting nano-ZnO and heavy metal ions. For leachate containing Cu(II) and Cr(VI) ions, at the initial stage of landfilling, the pH of leachate is acidic, ionic strength value is high, the humic acid concentration is low, and the transportability of nano-ZnO is weak. As the landfill age increased, the pH value in the leachate gradually increases, when the ions are raised to alkaline, these ions are trending to precipitated or adsorbed to the solid wastes in landfill, which resulting in low IS value of leachate. At the same time, more refractory organic matter gradually increases such as HA, which provides repulsive steric effects, so the nano-ZnO is more likely to migrate. Overall, the Cr(VI) can promote the transport of nano-ZnO more than Cu(II).

Keywords: heavy metal ions, landfill leachate, nano-ZnO, transport

Procedia PDF Downloads 136
3656 Transient Level in the Surge Chamber at the Robert-bourassa Generating Station

Authors: Maryam Kamali Nezhad

Abstract:

The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels.

Keywords: generating station, surge chamber, maximum transient level, hydroelectric power station, turbine-generator, reservoir

Procedia PDF Downloads 84
3655 Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries

Authors: Katia Ayouz-Chebout, Fatima Boudeffar, Maha Ayat, Malika Berouaken, Chafiaa Yaddaden, Saloua Merazga, Nouredine Gabouze

Abstract:

Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured.

Keywords: composite nanobelts, vanadium pentoxide, nickel oxide, Li-ion batteries

Procedia PDF Downloads 23
3654 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract

Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satriya Oktaviano, Adam Kusuma Rianto

Abstract:

Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm.

Keywords: MgO, nanoparticle, calliandra calothyrsus, green-synthesis

Procedia PDF Downloads 78
3653 The Relationship between Size of Normal and Cystic Bovine Ovarian Follicles with Follicular Fluid Levels of Nitric Oxide and Estradiol

Authors: Hamidreza Khodaei, Behnaz Mahdavi, Leila Karshenas

Abstract:

Nitric oxide (NO) is a small fast acting neurotransmitter, which is synthesized From L-arginine by nitric oxide synthase. Studies show that NO affects a wide range of reproductive functions. Steroidal hormones synthesis, LH surge during ovulation, follicular growth and ovulation are all affected by NO. Therefore, the objective of this study was to evaluate the relationship between NO and estradiol (E2) production in ovarian follicles and cysts in bovines. Two experiment groups were formed and serum and follicular fluid levels Of NO and estradiol (E2) was measured. In the first group, follicular fluids were obtained from 30 slaughtered cows. Follicles were divided into three groups according to follicular diameter: Small follicles, <5 mm, medium-sized follicles, 5 to 10 mm, and large follicles, >10 mm. 30 follicles were randomly selected within each group. Blood samples were obtained via jugular vein. NO concentrations in blood and ovarian follicular fluids were measured by Griess reaction method and radio-immunoassay respectively. In the second group: 12 cows in follicular phase and with cystic follicles were selected and a cystic follicle was obtained from each. NO and E2 levels were measured as done for the first experiment group. The data were analyzed by SAS software using ANOVA and Duncan’s test. NO concentrations of follicular fluids from large follicles were significantly higher than those of the medium and small-sized ones. There were significant differences in the concentrations of nitrite and nitrate (Stable metabolites of NO) between large and cystic follicles, with extremely low NO and high E2 levels in cystic follicles (p<0.01).The results suggest that paracrine effects of NO may play an important role in the control of ovarian follicle growth and development of cystic follicles in bovines. It seems that NO dictates its effects through inhibition of ovarian steroidal synthesis.

Keywords: nitric oxide, estradiol, cystic follicle, cow, oogenesis, oocyte maturation, follicular fluid

Procedia PDF Downloads 234
3652 Device for Reversible Hydrogen Isotope Storage with Aluminum Oxide Ceramic Case

Authors: Igor P. Maximkin, Arkady A. Yukhimchuk, Victor V. Baluev, Igor L. Malkov, Rafael K. Musyaev, Damir T. Sitdikov, Alexey V. Buchirin, Vasily V. Tikhonov

Abstract:

Minimization of tritium diffusion leakage when developing devices handling tritium-containing media is key problems whose solution will at least allow essential enhancement of radiation safety and minimization of diffusion losses of expensive tritium. One of the ways to solve this problem is to use Al₂O₃ high-strength non-porous ceramics as a structural material of the bed body. This alumina ceramics offers high strength characteristics, but its main advantages are low hydrogen permeability (as against the used structural material) and high dielectric properties. The latter enables direct induction heating of an hydride-forming metal without essential heating of the pressure and containment vessel. The use of alumina ceramics and induction heating allows: - essential reduction of tritium extraction time; - several orders reduction of tritium diffusion leakage; - more complete extraction of tritium from metal hydrides due to its higher heating up to melting in the event of final disposal of the device. The paper presents computational and experimental results for the tritium bed designed to absorb 6 liters of tritium. Titanium was used as hydrogen isotope sorbent. Results of hydrogen realize kinetic from hydride-forming metal, strength and cyclic service life tests are reported. Recommendations are also provided for the practical use of the given bed type.

Keywords: aluminum oxide ceramic, hydrogen pressure, hydrogen isotope storage, titanium hydride

Procedia PDF Downloads 407
3651 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 87
3650 Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier

Authors: Jolanta Pulit-Prociak, Olga Dlugosz, Marcin Banach

Abstract:

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Keywords: nanomaterials, zinc oxide, drug delivery system, toxicity

Procedia PDF Downloads 191
3649 A Modelling Study to Compare the Storm Surge along Oman Coast Due to Ashobaa and Nanauk Cyclones

Authors: R. V. Suresh Reddi, Vishnu S. Das, Mathew Leslie

Abstract:

The weather systems within the Arabian Sea is very dynamic in terms of monsoon and cyclone events. The storms generated in the Arabian Sea are more likely to progress in the north-west or west direction towards Oman. From the database of Joint Typhoon Warning Center (JTWC), the number of cyclones that hit the Oman coast or pass within close vicinity is noteworthy and therefore they must be considered when looking at coastal/port engineering design and development projects. This paper provides a case study of two cyclones, i.e., Nanauk (2014) and Ashobaa (2015) to assess the impact on storm surge off the Oman coast. These two cyclones have been selected since they are comparable in terms of maximum wind, cyclone duration, central pressure and month of occurrence. They are of similar strength but differ in track, allowing the impact of proximity to the coast to be considered. Of the two selected cyclones, Ashobaa is the 'extreme' case with close proximity while Nanauk remains further offshore and is considered as a more typical case. The available 'best-track' data from JTWC is obtained for the 2 selected cyclones, and the cyclone winds are generated using a 'Cyclone Wind Generation Tool' from MIKE (modelling software) from DHI (Danish Hydraulic Institute). Using MIKE 21 Hydrodynamic model powered by DHI the storm surge is estimated at selected offshore locations along the Oman coast.

Keywords: costal engineering, cyclone, storm surge, modelling

Procedia PDF Downloads 145
3648 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh

Authors: Vivek Ganesh

Abstract:

Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.

Keywords: inundation map, NDVI map, storm tide map, track map

Procedia PDF Downloads 268
3647 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 385