Search results for: low salinity water flooding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8926

Search results for: low salinity water flooding

8836 Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam (Ankara, Turkey)

Authors: Gulsen Tozsin, Fatma Bakir, Cemil Acar, Ercument Koc

Abstract:

Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. The quality of these surface water resources were evaluated in terms of pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results revealed that the quality of all the investigated water sources are generally at satisfactory level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.

Keywords: Kurtbogazi dam, water quality assessment, Ankara water, water supply

Procedia PDF Downloads 377
8835 Green Revolution and Reckless Use of Water and Its Implication on Climate Change Leading to Desertification: Situation of Karnataka, India

Authors: Arun Das

Abstract:

One of the basic objectives of Independent India five decades ago was to meet the increasing demand for food to its growing population. Self-sufficiency was accomplished towards food production and it was attained through launching green revolution program. The green revolution repercussions were not realized at that moment. Many projects were undertaken. Especially, major and minor irrigation projects were executed to harness the river water in the dry land regions of Karnataka. In the elevated topographical lands, extraction of underground water was a solace given by the government to protect the interest of the dry land farmers whose land did not come under the command area. Free borewell digging, pump sets, and electricity were provided. Thus, the self-sufficiency was achieved. Contrary to this, the Continuous long-term extraction of water for agriculture from bore well and in the irrigated tracks has lead to two-way effect such as soil leeching (Alkalinity and Salinity), secondly, depleted underground water to incredible deeps has pushed the natural process to an un-reparable damage which in turn the nature lost to support even a tiny plants like grass to grow, discouraging human and animal habitation, Both the process is silently turning southwestern, central, northeastern and north western regions of Karnataka into desert. The grave situation of Karnataka green revolution is addressed in this paper to alert reckless use of water and also some of the suggestions are recommended based on the ground information.

Keywords: alkalinity, desertification, green revolution, salinity, water

Procedia PDF Downloads 283
8834 Passive Solar-Driven Membrane Distiller for Desalination: Effect of Middle Layer Material and Thickness on Desalination Performance

Authors: Glebert C. Dadol, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem. One of the promising solutions to this challenge is the use of membrane-based desalination technologies. In this study, a passive solar-driven membrane (PSDM) distillation was employed to test its desalination performance. The PSDM was fabricated using a TiNOX sheet solar absorber, cellulose-based hydrophilic top and bottom layers, and a middle layer. The effects of the middle layer material and thickness on the desalination performance in terms of distillate flow rate, productivity, and salinity were investigated. An air-gap screen mesh (2 mm, 4 mm, 6 mm thickness) and a hydrophobic PTFE membrane (0.3 mm thickness) were used as middle-layer materials. Saltwater input (35 g/L NaCl) was used for the PSDM distiller on a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate flow rate and productivity of 1.08 L/m²-h and 1.47 L/kWh, respectively, were achieved using a 2 mm air-gap middle layer, but it also resulted in a high salinity of 25.20 g/L. Increasing the air gap lowered the salinity but also decreased the flow rate and productivity. The lowest salinity of 1.07 g/L was achieved using 6 mm air gap, but the flow rate and productivity were reduced to 0.08 L/m²-h and 0.17 L/kWh, respectively. The use of a hydrophobic PTFE membrane, on the other hand, did not offer a significant improvement in its performance. A PDSM distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. Various modifications and optimizations to the distiller can be done to improve its performance further.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 123
8833 Simulation of Flood Inundation in Kedukan River Using HEC-RAS and GIS

Authors: Reini S. Ilmiaty, Muhammad B. Al Amin, Sarino, Muzamil Jariski

Abstract:

Kedukan River is an artificial river which serves as a Watershed Boang drainage channel in Palembang. The river has upstream and downstream connected to Musi River, that often overflowing and flooding caused by the huge runoff discharge and high tide water level of Musi River. This study aimed to analyze the flood water surface profile on Kedukan River continued with flood inundation simulation to determine flooding prone areas in research area. The analysis starts from the peak runoff discharge calculations using rational method followed by water surface profile analysis using HEC-RAS program controlled by manual calculations using standard stages. The analysis followed by running flood inundation simulation using ArcGIS program that has been integrated with HEC-GeoRAS. Flood inundation simulation on Kedukan River creates inundation characteristic maps with depth, area, and circumference of inundation as the parameters. The inundation maps are very useful in providing an overview of flood prone areas in Kedukan River.

Keywords: flood modelling, HEC-GeoRAS, HEC-RAS, inundation map

Procedia PDF Downloads 511
8832 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery

Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak

Abstract:

Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).

Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability

Procedia PDF Downloads 111
8831 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria

Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola

Abstract:

Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.

Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies

Procedia PDF Downloads 431
8830 The Environmental Effects of the Flood Disaster in Anambra State

Authors: U. V. Okpala

Abstract:

Flood is an overflow of water that submerges or ‘drowns’ land. In developing countries it occurs as a result of blocking of natural and man-made drainages and poor maintenance of water dams/reservoirs which seldom give way after persistent heavy down pours. In coastal lowlands and swamp lands, flooding is aided mainly by blocked channels and indiscriminate sand fling of coastal swamp areas and natural drainage channel for urban development/constructions. In this paper, the causes of flood and possible scientific, technological, political, economic and social impacts of flood disaster on the environment a case study of Anambra State have been studied. Often times flooding is caused by climate change, especially in the developed economy where scientific mitigating options are highly employed. Researchers have identified Green Houses Gases (GHG) as the cause of global climate change. The recent flood disaster in Anambra State which caused physical damage to structures, social dislocation, contamination of clean drinking water, spread of water-borne diseases, shortage of crops and food supplies, death of non-tolerant tree species, disruption in transportation system, serious economic loss and psychological trauma is a function of climate change. There is need to encourage generation of renewable energy sources, use of less carbon intensive fuels and other energy efficient sources. Carbon capture/sequestration, proper management of our drainage systems and good maintenance of our dams are good option towards saving the environment.

Keywords: flooding, climate change, carbon capture, energy systems

Procedia PDF Downloads 375
8829 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 103
8828 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 97
8827 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 152
8826 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis

Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias

Abstract:

Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.

Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification

Procedia PDF Downloads 365
8825 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 148
8824 Planning of Green Infrastructure on a City Level

Authors: James Li, Darko Joksimovic

Abstract:

Urban development changes the natural hydrologic cycle, resulting in storm water impacts such as flooding, water quality degradation, receiving water erosion, and ecosystem deterioration. An integrated storm water managementapproach utilizing source and conveyance (termed green infrastructure) and end-of-pipe control measures is an effective way to manage urban storm water impacts. This paper focuses onplanning green infrastructure (GI) at the source and along the drainage system on a city level. It consists of (1)geospatial analysis of feasible GI using physical suitability; (2) modelling of cumulative GI's stormwater performance; and (3) cost-effectiveness analysis to prioritize the implementation of GI. A case study of the City of Barrie in Ontario, Canada, was used to demonstrate the GI's planning.

Keywords: cost-effectiveness of storm water controls, green infrastructure, urban storm water, city-level master planning

Procedia PDF Downloads 98
8823 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl

Authors: Muhittin Karaman, Murat Budakoglu

Abstract:

In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.

Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey

Procedia PDF Downloads 447
8822 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage

Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying

Abstract:

Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.

Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize

Procedia PDF Downloads 320
8821 Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol

Authors: Ameer Khan, Iffat Jamal, Ambreen Azam

Abstract:

An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity.

Keywords: salinity, triacontanol, spinach, biochemical, physiological

Procedia PDF Downloads 297
8820 Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops

Authors: Nikolaos Katsoulas, Ioannis Naounoulis, Sofia Faliagka

Abstract:

Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858.

Keywords: hydroponics, salinity, water use efficiencu, nutrients use efficiency

Procedia PDF Downloads 82
8819 Dilution of Saline Irrigation Based on Plant's Physiological Responses to Salt Stress Following by Re-Watering

Authors: Qaiser Javed, Ahmad Azeem

Abstract:

Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources.

Keywords: dilution model, plant growth traits, re-watering, salt stress

Procedia PDF Downloads 159
8818 Urban River As Living Infrastructure: Tidal Flooding And Sea Level Rise In A Working Waterway In Hampton Roads, Virginia

Authors: William Luke Hamel

Abstract:

Existing conceptions of urban flooding caused by tidal fluctuations and sea-level rise have been inadequately conceptualized by metrics of resilience and methods of flow modeling. While a great deal of research has been devoted to the effects of urbanization on pluvial flooding, the kind of tidal flooding experienced by locations like Hampton Roads, Virginia, has not been adequately conceptualized as being a result of human factors such as urbanization and gray infrastructure. Resilience from sea level rise and its associated flooding has been pioneered in the region with the 2015 Norfolk Resilience Plan from 100 Resilient Cities as well as the 2016 Norfolk Vision 2100 plan, which envisions different patterns of land use for the city. Urban resilience still conceptualizes the city as having the ability to maintain an equilibrium in the face of disruptions. This economic and social equilibrium relies on the Elizabeth River, narrowly conceptualized. Intentionally or accidentally, the river was made to be a piece of infrastructure. Its development was meant to serve the docks, shipyards, naval yards, and port infrastructure that gives the region so much of its economic life. Inasmuch as it functions to permit the movement of cargo; the raising and lowering of ships to be repaired, commissioned, or decommissioned; or the provisioning of military vessels, the river as infrastructure is functioning properly. The idea that the infrastructure is malfunctioning when high tides and sea-level rise create flooding is predicated on the idea that the infrastructure is truly a human creation and can be controlled. The natural flooding cycles of an urban river, combined with the action of climate change and sea-level rise, are only abnormal so much as they encroach on the development that first encroached on the river. The urban political ecology of water provides the ability to view the river as an infrastructural extension of urban networks while also calling for its emancipation from stationarity and human control. Understanding the river and city as a hydrosocial territory or as a socio-natural system liberates both actors from the duality of the natural and the social while repositioning river flooding as a normal part of coexistence on a floodplain. This paper argues for the adoption of an urban political ecology lens in the analysis and governance of urban rivers like the Elizabeth River as a departure from the equilibrium-seeking and stability metrics of urban resilience.

Keywords: urban flooding, political ecology, Elizabeth river, Hampton roads

Procedia PDF Downloads 168
8817 Study of the Effect of Humic Acids on Soil Salinity Reduction

Authors: S. El Hasini, M. El Azzouzi, M. De Nobili, K. Azim, A. Zouahri

Abstract:

Soil salinization is one of the most severe environmental hazards which threaten sustainable agriculture in arid and semi-arid regions, including Morocco. In this regard the application of organic matter to saline soil has confirmed its effectiveness. The present study was aimed to examine the effect of humic acid which represent, among others, the important component of organic matter that contributes to reduce soil salinity. In fact, different composts taken from Agadir (Morocco), with different C/N ratio, were tested. After extraction and purification of humic acid, the interaction with Na2CO3 was carried out. The reduction of salinity is calculated as a value expressed in mg Na2CO3 equivalent/g HA. The results showed that humic acid had generally a significant effect on salinity. In that respect, the hypothesis proposed that carboxylic groups of humic acid create bonds with excess sodium in the soil to form a coherent complex which descends by leaching operation. The comparison between composts was based on C/N ratio, it showed that the compost with the lower ratio C/N had the most important effect on salinity reduction, whereas the compost with higher C/N ratio was less effective. The study is attended also to evaluate the quality of each compost by determining the humification index, we noticed that the compost which have the lowest C/N (20) ratio was relatively less stable, where a greater predominance of the humified substances, when the compost with C/N ratio is 35 exhibited higher stability.

Keywords: compost, humic acid, organic matter, salinity

Procedia PDF Downloads 241
8816 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 287
8815 Impact of Flooding on Food Calorie Intake and Health Outcomes among Small Holder Farm Households in Koton Karfe Local Government Area of Kogi State, Nigeria

Authors: Cornelius Michael Ekenta, Aderonke Bashirat Mohammed, Sefi Ahmed

Abstract:

The research examined the impact of flooding on food calorie intake and health challenges among smallholder farm households in Koton Karfe Local Government Area of Kogi State, Nigeria. Purposive and random sampling techniques were used to select 130 farm households in selected villages in the area. Primary data were generated through the administration of a well-structured questionnaire. Data were analyzed with descriptive statistics, Double Difference Estimator (DDE), Calorie Intake Estimation Function, t-test, and multiple regressions. The result shows that farm households lost an average of 132, 950kg of selected crops amounting to about N20m ($56, 542) loose in income. Food daily calorie intake indicates a loss of an average of 715.18Kcal, showing a significant difference in calorie intake before and after flooding (t = 2.0629) at 5% probability. Furthermore, the health challenges most prevalent during flooding were malaria fever, typhoid fever, cholera, and dysentery. The determinants of daily calorie intake were age, household size, level of income, flooding, health challenges, and food price. The study concluded that flooding had negative impacts on crop output and income, daily food calorie intact, and health challenges of a farm household in the study area. It was recommended that the State Government should make adequate and proper arrangements to relocate residents of the area at the warning of possible flooding by the National Metrological Centre and should, through the State Emergency Management Agency (SEMA), provide relieve items to the residents to cushion the effects of the flooding.

Keywords: calorie, cholera, flooding, health challenges, impact

Procedia PDF Downloads 144
8814 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh

Abstract:

Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato

Procedia PDF Downloads 443
8813 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria

Authors: Babatunde Adebo, Adedeji Adetoyinbo

Abstract:

Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.

Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration

Procedia PDF Downloads 240
8812 From Ondoy to Habagat: Comparison of the Community Coping Strategies between Barangay Tumana and Provident Village, Marikina City

Authors: Dinnah Feye H. Andal, Ann Laurice V. Salonga

Abstract:

The paper investigates the flooding event that was experienced by Marikina City residents during the onslaught of Tropical Storm Ondoy on September 26, 2009 and during the heavy downpour caused by the southwest monsoon (Habagat) on August 1-8, 2012. Typhoon Ketsana, locally known as Tropical Storm Ondoy, devastated the whole of Marikina City, displacing a lot of people from their homes and damages properties as well, as flood rose at a very short period of time. Meanwhile, the massive amount of rain water brought by the southwest monsoon lasted for a week that also caused flooding to different parts of Metro Manila including Marikina City. This paper examines how the respondents’ experiences of the flooding caused by Tropical Storm Ondoy informed the coping strategies that the households in Barangay Tumana and Provident Village employed during the flooding brought by the southwest monsoon rains. Specifically, the research compares the coping strategies to flood hazards between residents of Barangay Tumana and Provident Village before, during and after the flooding caused by the southwest monsoon rains. Both study sites have relatively low elevation and are located along rivers and creeks which make them highly susceptible to flood. Interviews with affected residents were undertaken to understand how a household's coping strategies contribute to the development of community coping strategies at the respective neighborhood level. Based from the findings, income levels, local politics, religion and social relations between and among neighbors affect the way household and community coping strategies differ in the two case study sites.

Keywords: community coping strategies, Habagat, Marikina, Ondoy

Procedia PDF Downloads 315
8811 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme

Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo

Abstract:

South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.

Keywords: drainage canal, water quality, irrigation, pollutants, environment

Procedia PDF Downloads 335
8810 Climate Change Adaptation Success in a Low Income Country Setting, Bangladesh

Authors: Tanveer Ahmed Choudhury

Abstract:

Background: Bangladesh is one of the largest deltas in the world, with high population density and high rates of poverty and illiteracy. 80% of the country is on low-lying floodplains, leaving the country one of the most vulnerable to the adverse effects of climate change: sea level rise, cyclones and storms, salinity intrusion, rising temperatures and heavy monsoon downpours. Such climatic events already limit Economic Development in the country. Although Bangladesh has had little responsibility in contributing to global climatic change, it is vulnerable to both its direct and indirect impacts. Real threats include reduced agricultural production, worsening food security, increased incidence of flooding and drought, spreading disease and an increased risk of conflict over scarce land and water resources. Currently, 8.3 million Bangladeshis live in cyclone high risk areas. However, by 2050 this is expected to grow to 20.3 million people, if proper adaptive actions are not taken. Under a high emissions scenario, an additional 7.6 million people will be exposed to very high salinity by 2050 compared to current levels. It is also projected that, an average of 7.2 million people will be affected by flooding due to sea level rise every year between 2070-2100 and If global emissions decrease rapidly and adaptation interventions are taken, the population affected by flooding could be limited to only about 14,000 people. To combat the climate change adverse effects, Bangladesh government has initiated many adaptive measures specially in infrastructure and renewable energy sector. Government is investing huge money and initiated many projects which have been proved very success full. Objectives: The objective of this paper is to describe some successful measures initiated by Bangladesh government in its effort to make the country a Climate Resilient. Methodology: Review of operation plan and activities of different relevant Ministries of Bangladesh government. Result: The following initiative projects, programs and activities are considered as best practices for Climate Change adaptation successes for Bangladesh: 1. The Infrastructure Development Company Limited (IDCOL); 2. Climate Change and Health Promotion Unit (CCHPU); 3. The Climate Change Trust Fund (CCTF); 4. Community Climate Change Project (CCCP); 5. Health, Population, Nutrition Sector Development Program (HPNSDP, 2011-2016)- "Climate Change and Environmental Issues"; 6. Ministry of Health and Family Welfare, Bangladesh and WHO Collaboration; - National Adaptation Plan. -"Building adaptation to climate change in health in least developed countries through resilient WASH". 7. COP-21 “Climate and health country profile -2015 Bangladesh. Conclusion: Due to a vast coastline, low-lying land and abundance of rivers, Bangladesh is highly vulnerable to climate change. Having extensive experience with facing natural disasters, Bangladesh has developed a successful adaptation program, which led to a significant reduction in casualties from extreme weather events. In a low income country setting, Bangladesh had successfully adapted various projects and initiatives to combat future Climate Change challenges.

Keywords: climate, change, success, Bangladesh

Procedia PDF Downloads 249
8809 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 372
8808 River Offtake Management Using Mathematical Modelling Tool: A Case Study of the Gorai River, Bangladesh

Authors: Sarwat Jahan, Asker Rajin Rahman

Abstract:

Management of offtake of any fluvial river is very sensitive in terms of long-term sustainability where the variation of water flow and sediment transport range are wide enough throughout a hydrological year. The Gorai River is a major distributary of the Ganges River in Bangladesh and is termed as a primary source of fresh water for the South-West part of the country. Every year, significant siltation of the Gorai offtake disconnects it from the Ganges during the dry season. As a result, the socio-economic and environmental condition of the downstream areas has been deteriorating for a few decades. To improve the overall situation of the Gorai offtake and its dependent areas, a study has been conducted by the Institute of Water Modelling, Bangladesh, in 2022. Using the mathematical morphological modeling tool MIKE 21C of DHI Water & Environment, Denmark, simulated results revealed the need for dredging/river training structures for offtake management at the Gorai offtake to ensure significant dry season flow towards the downstream. The dry season flow is found to increase significantly with the proposed river interventions, which also improves the environmental conditions in terms of salinity of the South-West zone of the country. This paper summarizes the primary findings of the analyzed results of the developed mathematical model for improving the existing condition of the Gorai River.

Keywords: Gorai river, mathematical modelling, offtake, siltation, salinity

Procedia PDF Downloads 97
8807 Enhancing Environmental Impact Assessment for Natural Gas Pipeline Systems: Lessons in Water and Wastewater Management

Authors: Kittipon Chittanukul, Chayut Bureethan, Chutimon Piromyaporn

Abstract:

In Thailand, the natural gas pipeline system requires the preparation of an Environmental Impact Assessment (EIA) report for approval by the relevant agency, the Office of Natural Resources and Environmental Policy and Planning (ONEP), in the pre-construction stage. As of December 2022, PTT has a lot of gas pipeline system spanning around the country. Our experience has shown that the EIA is a significant part of the project plan. In 2011, There was a catastrophic flood in multiple areas of Thailand. It destroyed lives and properties. This event is still in Thai people’s mind. Furthermore, rainfall has been increasing for three consecutive years (2020-2022). Moreover, municipalities are situated in low land river basin and tropical rainfall zone. So many areas still suffer from flooding. Especially in 2022, there will be a 60% increase in water demand compared to the previous year. Therefore, all activities will take into account the quality of the receiving water. The above information emphasizes water and wastewater management are significant in EIA report. PTT has accumulated a large number of lessons learned in water and wastewater management. Our pipeline system execution is composed of EIA stage, construction stage, and operation and maintenance phase. We provide practical Information on water and wastewater management to enhance the EIA process for the pipeline system. The examples of lessons learned in water and wastewater management include techniques to address water and wastewater impact throughout the overall pipelines systems, mitigation measures and monitoring results of these measures. This practical information will alleviate the anxiety of the ONEP committee when approving the EIA report and will build trust among stakeholders in the vicinity of the gas pipeline system area.

Keywords: environmental impact assessment, gas pipeline system, low land basin, high risk flooding area, mitigation measure

Procedia PDF Downloads 66