Search results for: local thermal non equilibrium model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23699

Search results for: local thermal non equilibrium model

23609 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 179
23608 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez

Abstract:

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.

Keywords: kinetics, lignin, phenolic foam, thermal degradation

Procedia PDF Downloads 471
23607 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit

Procedia PDF Downloads 111
23606 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 131
23605 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms

Procedia PDF Downloads 215
23604 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate

Authors: Bongsu Choi, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.

Keywords: envelope, edge conduction, thermal conductivity, vacuum insulation panel

Procedia PDF Downloads 386
23603 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 272
23602 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 116
23601 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 370
23600 Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House

Authors: Thet Su Hlaing, Shoichi Kojima

Abstract:

The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption.

Keywords: bamboo house, hot and humid climate, indoor thermal comfort, local indigenous roofing material

Procedia PDF Downloads 156
23599 Pure Scalar Equilibria for Normal-Form Games

Authors: Herbert W. Corley

Abstract:

A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.

Keywords: compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium

Procedia PDF Downloads 102
23598 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 125
23597 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 349
23596 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions

Procedia PDF Downloads 348
23595 Adsorption of Methyl Violet Dye from Aqueous Solution onto Modified Kapok Sawdust : Characteristics and Equilibrium Studies

Authors: Widi Astuti, Triastuti Sulistyaningsih, Masni Maksiola

Abstract:

Kapok sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of methyl violet in aqueous solution. To increase the adsorption capacity, kapok sawdust was reacted with sodium hydroxide (NaOH) solution having various concentrations. Various physico-chemical parameters such as solution pH, contact time and initial dye concentration were studied. Langmuir, Freundlich and Redlich-Peterson isotherm model were used to analyze the equilibrium data. The research shows that the experimental data fitted well with the Redlich-Peterson model, with the value of constants are 41.001 for KR, 0.523 for aR and 0.799 for g.

Keywords: kapok sawdust, methyl violet, dye, adsorption

Procedia PDF Downloads 300
23594 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class

Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc

Abstract:

This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.

Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory

Procedia PDF Downloads 90
23593 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State

Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik

Abstract:

Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".

Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate

Procedia PDF Downloads 178
23592 Tax Evasion and Macroeconomic (In)stability

Authors: Wei-Neng Wang, Jhy-Yuan Shieh, Jhy-Hwa Chen, Juin-Jen Chang

Abstract:

This paper incorporate tax evasion into a one-sector real business cycle (RBC) model to explores the quantitative interrelations between income tax rate and equilibrium (in)determinacy, and income tax rate is endogenously determined in order to balance the government budget. We find that the level of the effective income tax rate is key factor for equilibrium (in)determinacy, instead of the level of income tax rate in a tax evasion economy. Under an economy with tax evasion, the higher income tax rate is not sufficiently to lead to equilibrium indeterminate, it must combine with a necessary condition which is the lower fraction of tax evasion and that can result in agents' optimistic expectations to become self-fulfilling and sunspot fluctuation more likely to occur. On the other hand, an economy with tax evasion can see its macroeconomy become more stabilize, and a higher fraction of income tax evasion may has a stronger stabilizing effect.

Keywords: tax evasion, balanced-budget rule, equlibirium (in)determinacy, effective income tax rate

Procedia PDF Downloads 50
23591 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity

Authors: Tania Sharmin Khaleque, Mohammad Ferdows

Abstract:

The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.

Keywords: free convection, heat generation, thermal diffusivity, variable viscosity

Procedia PDF Downloads 334
23590 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 350
23589 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia PDF Downloads 157
23588 Comfort in Green: Thermal Performance and Comfort Analysis of Sky Garden, SM City, North EDSA, Philippines

Authors: Raul Chavez Jr.

Abstract:

Green roof's body of knowledge appears to be in its infancy stage in the Philippines. To contribute to its development, this study intends to answer the question: Does the existing green roof in Metro Manila perform well in providing thermal comfort and satisfaction to users? Relatively, this study focuses on thermal sensation and satisfaction of users, surface temperature comparison, weather data comparison of the site (Sky Garden) and local weather station (PAG-ASA), and its thermal resistance capacity. Initially, the researcher conducted a point-in-time survey in parallel with weather data gathering from PAG-ASA and Sky Garden. In line with these, ambient and surface temperature are conducted through the use of a digital anemometer, with humidity and temperature, and non-contact infrared thermometer respectively. Furthermore, to determine the Sky Garden's overall thermal resistance, materials found on site were identified and tabulated based on specified locations. It revealed that the Sky Garden can be considered comfortable based from PMV-PPD Model of ASHRAE Standard 55 having similar results from thermal comfort and thermal satisfaction survey, which is contrary to the actual condition of the Sky Garden by means of a psychrometric chart which falls beyond the contextualized comfort zone. In addition, ground floor benefited the most in terms of lower average ambient temperature and humidity compared to the Sky Garden. Lastly, surface temperature data indicates that the green roof portion obtained the highest average temperature yet performed well in terms of heat resistance compared to other locations. These results provided the researcher valuable baseline information of the actual performance of a certain green roof in Metro Manila that could be vital in locally enhancing the system even further and for future studies.

Keywords: Green Roof, Thermal Analysis, Thermal Comfort, Thermal Performance

Procedia PDF Downloads 149
23587 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model

Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura

Abstract:

The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.

Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride

Procedia PDF Downloads 268
23586 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE

Authors: Lakrim Abderrazak, Tahri Driss

Abstract:

This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).

Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.

Procedia PDF Downloads 563
23585 Separation of Oryzanol from Rice Bran Oil Using Silica: Equilibrium of Batch Adsorption

Authors: A. D. Susanti, W. B. Sediawan, S. K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Rice bran oil contains significant amounts of oryzanol, a natural antioxidant that considered has higher antioxidant activity than vitamin E (tocopherol). Oryzanol reviewed has several health properties and interested in pharmacy, nutrition, and cosmetics. For practical usage, isolation and purification would be necessary due to the low concentration of oryzanol in crude rice bran oil (0.9-2.9%). Batch chromatography has proved as a promising process for the oryzanol recovery, but productivity was still low and scale-up processes of industrial interest have not yet been described. In order to improve productivity of batch chromatography, a continuous chromatography design namely Simulated Moving Bed (SMB) concept have been proposed. The SMB concept has interested for continuous commercial scale separation of binary system (oryzanol and rice bran oil), and rice bran oil still obtained as side product. Design of SMB chromatography for oryzanol separation requires quantification of its equilibrium. In this study, equilibrium of oryzanol separation conducted in batch adsorption using silica as the adsorbent and n-hexane/acetone (9:1) as the eluent. Three isotherm models, namely the Henry, Langmuir, and Freundlich equations, have been applied and modified for the experimental data to establish appropriate correlation for each sample. It turned out that the model quantitatively describe the equilibrium experimental data and will directed for design of SMB chromatography.

Keywords: adsorption, equilibrium, oryzanol, rice bran oil, simulated moving bed

Procedia PDF Downloads 267
23584 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data

Procedia PDF Downloads 315
23583 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 294
23582 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 94
23581 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

Authors: Kalyani Kulkarni, Bharat Chaudhari

Abstract:

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.

Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation

Procedia PDF Downloads 454
23580 Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries

Authors: Kanshio Richard Tyokyaa, Jagadish Singh

Abstract:

In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable.

Keywords: out-of-plane, equilibrium points, stability, elliptic restricted three-body problem, oblateness, zonal harmonic

Procedia PDF Downloads 175