Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 70198
Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries

Authors: Kanshio Richard Tyokyaa, Jagadish Singh


In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable.

Keywords: out-of-plane, equilibrium points, stability, elliptic restricted three-body problem, oblateness, zonal harmonic

Procedia PDF Downloads 99