Search results for: generative dialogue
432 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 14431 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method
Authors: João Rato, Nuno Costa
Abstract:
The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate
Procedia PDF Downloads 322430 Innovating Assessment: Exploring AI-Driven Scoring for Language Tests in Pre-Service Education Admissions
Authors: Lucie Bartosova
Abstract:
The rapid advancements in generative artificial intelligence (AI) have introduced transformative possibilities in education, particularly in assessment methodologies. This work provides an overview of the current state of the literature on AI-scoring methodologies for evaluating student-written responses. The focus is on how these innovations can be leveraged within large-scale assessments to address resource constraints such as limited assessors, time, and budget. Drawing from an initiative tied to a language test used for admitting candidates into a pre-service education program in the Faculty of Education at an Ontario university, the review explores the practical and ethical implications of integrating AI-driven tools into assessment processes. These tools are designed to automate the evaluation of learners’ written compositions, provide performance feedback, and support grading procedures. By synthesizing findings from recent research, the review highlights the effectiveness, reliability, and potential biases of AI in scoring, alongside considerations for transparency and fairness. This work emphasizes the dual role of generative AI as both a practical solution for scaling assessments and a subject of critical scrutiny to ensure its responsible implementation. The proposed integration of AI-scoring methodologies in our language test underscores the need to balance innovation with accountability, ensuring that AI tools enhance, rather than compromise, educational equity and rigor. OBJECTIVES OF YOUR RESEARCH To determine which generative AI model is most capable of evaluating written responses for university assessments based on specific criteria and to investigate potential biases within AI models to ensure fair assessments. METHODOLOGIES Evaluating generative AI models to determine their performance in assessing written responses against specific criteria. Collecting responses from previous assessments and annotating them with expert feedback to train and validate the AI models. MAIN CONTRIBUTIONS Introducing a tailored AI model to assess written responses on language tests. Offering a scalable and replicable model that informs broader applications of AI in educational assessments, contributing to policy-making and institutional best practices.Keywords: artificial intelligence, assessment practices, student written performance, automated essay scoring, language proficiency
Procedia PDF Downloads 7429 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 188428 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 175427 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 130426 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia
Authors: Arif Budiman
Abstract:
Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check
Procedia PDF Downloads 442425 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 78424 Indoor Fingerprint Localization Using 5G NR Multi-SSB Beam Features with GAN-Based Interpolation
Authors: LiRen Kang, LingXia Li, KaiKai Liu, Yue Jin, ZengShan Tian
Abstract:
With the widespread adoption of 5G technology in the Internet of Things (IoT), indoor localization methods based on 5G signals have gradually become a research hotspot. However, traditional methods often perform poorly in multipath interference and signal attenuation environments. To address these challenges, this paper proposes an innovative fingerprint localization method that utilizes the multiple synchronization signal block (SSB) beam features of 5G signals combined with generative adversarial networks (GANs) for interpolation. Our method incorporates a ray tracing model as an auxiliary, integrating signal propagation models to enhance the interpolation process. We precisely extract the multiple SSB beam features from 5G signals; in the localization stage, deep learning neural networks (DNN) are used for localization. Field tests show that localization errors of less than 1.5 meters can be achieved within about 200 square meters of indoor environment. Our method represents a 56.7% improvement compared to traditional methods that use received signal strength (RSS) as a single feature.Keywords: 5G NR, fingerprint localization, generative adversarial networks, Internet of Things, indoor localization systems
Procedia PDF Downloads 7423 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 32422 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 55421 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK
Authors: Esther Ekundayo
Abstract:
The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology
Procedia PDF Downloads 102420 The Effectiveness of Exchange of Tacit and Explicit Knowledge Using Digital and Face to Face Sharing
Authors: Delio I. Castaneda, Paul Toulson
Abstract:
The purpose of this study was to investigate the knowledge sharing effectiveness of two types of knowledge, tacit and explicit, depending on two channels: face to face or digital. Participants were 217 knowledge workers in New Zealand and researchers who attended a knowledge management conference in the United Kingdom. In the study, it was found that digital tools are effective to share explicit knowledge. In addition, digital tools that facilitated dialogue were effective to share tacit knowledge. It was also found that face to face communication was an effective way to share tacit and explicit knowledge. Results of this study contribute to clarify in what cases digital tools are effective to share tacit knowledge. Additionally, even though explicit knowledge can be easily shared using digital tools, this type of knowledge is also possible to be shared through dialogue. Result of this study may support practitioners to redesign programs and activities based on knowledge sharing to make strategies more effective.Keywords: digital knowledge, explicit knowledge, knowledge sharing, tacit knowledge
Procedia PDF Downloads 256419 Increasing the Dialogue in Workplaces Enhances the Age-Friendly Organisational Culture and Helps Employees Face Work-Related Dilemmas
Authors: Heli Makkonen, Eini Hyppönen
Abstract:
The ageing of employees, the availability of workforce, and employees’ engagement in work are today’s challenges in the field of health care and social services, and particularly in the care of older people. Therefore, it is important to enhance both the attractiveness of the work in the field of older people’s care and the retention of employees in the field, and also to pay attention to the length of careers. The length of careers can be affected, for example, by developing an age-friendly organisational culture. Changing the organisational culture in a workplace is, however, a slow process which requires engagement from employees and enhanced dialogue between employees. This article presents an example of age-friendly organisational culture in an older people’s care unit and presents the results of the development of this organisational culture to meet the identified development challenges. In this research-based development process, cycles used in action research were applied. Three workshops were arranged for employees in a service home for older people. The workshops worked as interventions, and the employees and their manager were given several consecutive assignments to be completed between them. In addition to workshops, the employees benchmarked two other service homes. In the workshops, data was collected by observing and documenting the conversations. After that, thematic analysis was used to identify the factors connected to an age-friendly organisational culture. By analysing the data and comparing it to previous studies, some dilemmas we recognised that were hindering or enhancing the attractiveness of work and the retention of employees in this nursing home. After each intervention, the process was reflected and evaluated, and the next steps were planned. The areas of development identified in the study were related to, for example, the flexibility of work, holistic ergonomics, the physical environment at the workplace, and the workplace culture. Some of the areas of development were taken over by the work community and carried out in cooperation with e.g. occupational health care. We encouraged the work community, and the employees provided us with information about their progress. In this research project, the focus was on the development of the workplace culture and, in particular, on the development of the culture of interaction. The workshops showed employees’ attitudes and strong opinions, which can be a challenge from the point of view of the attractiveness of work and the retention of employees in the field. On the other hand, the data revealed that the work community has an interest in developing the dialogue in the work community. Enhancing the dialogue gave the employees the opportunity and resources to face even challenging dilemmas related to the attractiveness of work and the retention of employees in the field. The psychological safety was also enhanced at the same time. The results of this study are part of a broader study that aims at building a model for extending older employees’ careers.Keywords: age-friendliness, attractiveness of work, dialogue, older people, organisational culture, workplace culture
Procedia PDF Downloads 78418 Self-Overestimation and Underestimation of Others: A Catalyst for Religious Conflict in Nigeria
Authors: Abdulazeez Balogun Shittu
Abstract:
This study investigates the role of self-overestimation and underestimation of others in fueling religious conflicts in Nigeria. Using a mixed-methods approach, this research examines how exaggerated self-perceptions and diminished views of others contribute to intergroup tensions, stereotypes, and violence. The findings reveal that self-overestimation and underestimation of others are significant predictors of religious conflict, mediated by factors such as intergroup bias, social identity, cultural narratives and lack of interfaith dialogue. The study also identifies the consequences of these biases, including Escalated sectarian violence, social cohesion erosion and polarized communities. To mitigate these effects, the research recommends interfaith education and dialogue initiatives, inclusive governance and policy frameworks and pluralistic media representation. This study contributes to the understanding of psychological and social dynamics driving religious conflict in Nigeria, informing evidence-based policies and interventions to promote peaceful coexistence.Keywords: conflict resolution, intergroup relations, Nigeria, Religious conflict, self-overestimation, social psychology, underestimation of others
Procedia PDF Downloads 17417 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 26416 MASCOT: Design and Development of an Interactive Self-Evaluation Tool for Students’ Thinking Complexity
Abstract:
'In Dialogue with Humanity’ and ‘In Dialogue with Nature’ are two compulsory General Education Foundation (GEF) courses for all undergraduates at the Chinese University of Hong Kong (CUHK). These courses aim to enrich students’ intellectual pursuits and enhance their thinking capabilities through classic readings. To better understand and evaluate students’ thinking habits and abilities, GEF introduced Narrative Qualitative Analysis (NQA) in 2014 and has continued the study since then. Through the NQA study, a two-way evaluation scheme has been developed, including both student self-evaluation and teacher evaluation. This study will first introduce the theoretical background and research framework of the NQA study and then focus on student self-evaluation. An interactive online application, MASCOT, has been developed to facilitate students’ self-evaluation of their own thinking complexity. In this presentation, the design and development of MASCOT will be explained, and the main results will be reported when applying it in classroom teaching. An obvious discrepancy has been observed between students’ self-evaluations and teachers’ evaluations.Keywords: narrative qualitative analysis, thinking complexity, student self-evaluation, interactive online application
Procedia PDF Downloads 49415 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 130414 Digital Dialogue Game, Epistemic Beliefs, Argumentation and Learning
Authors: Omid Noroozi, Martin Mulder
Abstract:
The motivational potential of educational games is undeniable especially for teaching topics and skills that are difficult to deal with in traditional educational situations such as argumentation competence. Willingness to argue has an association with student epistemic beliefs, which can influence whether, and the way in which students engage in argumentative discourse activities and critical discussion. The goal of this study was to explore how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate, and whether epistemic beliefs are significant to the outcomes. A pre-test, post-test design was used with students who were assigned to groups of four. They were asked to argue a controversial topic with the aim of exploring various perspectives, and the 'pros and cons' on the topic of 'Genetically Modified Organisms (GMOs)'. The results show that the game facilitated argumentative discourse and a willingness to argue and challenged peers, regardless of students’ epistemic beliefs. Furthermore, the game was evaluated positively in terms of students’ motivation and satisfaction with the learning experience.Keywords: argumentation, attitudinal change, epistemic beliefs, dialogue, digital game objectives and theoretical
Procedia PDF Downloads 406413 A Proposal on the Educational Transactional Analysis as a Dialogical Vision of Culture: Conceptual Signposts and Practical Tools for Educators
Authors: Marina Sartor Hoffer
Abstract:
The multicultural composition of today's societies poses new challenges to educational contexts. Schools are therefore called first to develop dialogic aptitudes and communicative skills adapted to the complex reality of post-modern societies. It is indispensable for educators and for young people to learn theoretical and practical tools during their scholastic path, in order to allow the knowledge of themselves and of the others with the aim of recognizing the value of the others regardless of their culture. Dialogic Skills help to understand and manage individual differences by allowing the solution of problems and preventing conflicts. The Educational Sector of Eric Berne’s Transactional Analysis offers a range of methods and techniques for this purpose. Educational Transactional Analysis is firmly anchored in the Personalist Philosophy and deserves to be promoted as a theoretical frame suitable to face the challenges of contemporary education. The goal of this paper is therefore to outline some conceptual and methodological signposts for the education to dialogue by drawing concepts and methodologies from educational transactional analysis.Keywords: dialogic process, education to dialogue, educational transactional analysis, personalism, the good of the relationship
Procedia PDF Downloads 267412 Linguistic Misinterpretation and the Dialogue of Civilizations
Authors: Oleg Redkin, Olga Bernikova
Abstract:
Globalization and migrations have made cross-cultural contacts more frequent and intensive. Sometimes, these contacts may lead to misunderstanding between partners of communication and misinterpretations of the verbal messages that some researchers tend to consider as the 'clash of civilizations'. In most cases, reasons for that may be found in cultural and linguistic differences and hence misinterpretations of intentions and behavior. The current research examines factors of verbal and non-verbal communication that should be taken into consideration in verbal and non-verbal contacts. Language is one of the most important manifestations of the cultural code, and it is often considered as one of the special features of a civilization. The Arabic language, in particular, is commonly associated with Islam and the language and the Arab-Muslim civilization. It is one of the most important markers of self-identification for more than 200 million of native speakers. Arabic is the language of the Quran and hence the symbol of religious affiliation for more than one billion Muslims around the globe. Adequate interpretation of Arabic texts requires profound knowledge of its grammar, semantics of its vocabulary. Communicating sides who belong to different cultural groups are guided by different models of behavior and hierarchy of values, besides that the vocabulary each of them uses in the dialogue may convey different semantic realities and vary in connotations. In this context direct, literal translation in most cases cannot adequately convey the original meaning of the original message. Besides that peculiarities and diversities of the extralinguistic information, such as the body language, communicative etiquette, cultural background and religious affiliations may make the dialogue even more difficult. It is very likely that the so called 'clash of civilizations' in most cases is due to misinterpretation of counterpart's means of discourse such as language, cultural codes, and models of behavior rather than lies in basic contradictions between partners of communication. In the process of communication, one has to rely on universal values rather than focus on cultural or religious peculiarities, to take into account current linguistic and extralinguistic context.Keywords: Arabic, civilization, discourse, language, linguistic
Procedia PDF Downloads 221411 Re-Thinking Community Relationship for Resolving Conflict and Building Peace in Ethiopia: The Need to Shift from Com-Animation to Communication
Authors: Sisaye Tamrat Ayalew
Abstract:
In Ethiopia, the relationships between different communities have been characterized by mistrust, prejudice, and conflict, resulting in mass killings, displacement, and human rights violations. These relationships are mainly based on ethnic, religious, and linguistic lines, leading to a polarized society. The aim of this study is to appraise the nature of two major community relationships, namely the I-Thou relationship, characterized by genuine dialogue and mutual understanding, and the I-It relationship, characterized by a monologue and mutual suspicion. The study also aims to analyze how these two types of relationships contribute to either resolving or aggravating conflicts and building or deteriorating peace in Ethiopia. The study adopts a qualitative approach, specifically hermeneutics, to explore the nature of the I-Thou and I-It relationships in the Ethiopian context. It also examines how political elites shape these relationships within the community. The study finds that the dominant relationship in Ethiopian society is the I-It relationship, which is manifested as "com-animation." This relationship is characterized by mutual mistrust, prejudice, hostility, and misunderstanding. As a result, conflicts have arisen, leading to violence, displacement, and human rights violations. The study concludes that there is a need to shift from the I-It (com-animation) relationship to the I-Thou (communication) relationship in Ethiopian society. This shift would involve rethinking and readjusting societal relationships, especially among political elites, to foster genuine dialogue, mutual understanding, and lasting peace. It is imperative to overcome mutual mistrust, prejudice, and misunderstanding in order to resolve conflicts and build a harmonious society in Ethiopia. The study's findings and recommendations contribute to raising awareness among both Ethiopians and the international community on the potential for conflict resolution and peacebuilding through a shift in community relationships.Keywords: dialogue, I-Thou relationship, I-It relationship, conflict resolution, building peace
Procedia PDF Downloads 113410 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 410409 Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan
Authors: Syed Bilawal Ali Shah
Abstract:
The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin.Keywords: Potwar Basin, Patala Shale, Rock-Eval pyrolysis, Indus Basin, VR %Ro
Procedia PDF Downloads 90408 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 44407 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 50406 Theology and Music in the XXI. Century: An Exploratory Study of Current Interrelation
Authors: Andrzej Kesiak
Abstract:
Contemporary theology is often accused of answering questions that nobody is asking, and of employing hermetic language that has lost its communication capacity. There is also a question that theology is asking itself: how theological discourse can still be influential on other disciplines and, how to overcome the separation of theology and belief. Undoubtedly, in the wider spectrum, the theological discourse has been and will be needed. The difficulty is how to find the right model of it, the model that would help theology to enter in dialogue with culture, art, science, and politics. Presumably, there is no only one such model, theology constantly needs to seek such models, and this is probably a never-ending journey; in other words, theology should adopt a profile of ‘a restless being’ if it wants to remain influential. Music, on the other hand, has always been very close to theology; in fact, a huge part of classical music is either sacred or religious. Many composers sought inspiration in religion, liturgy, religious painting and sacred texts. This paper will argue that despite all that it seems that a proper and factual dialogue is still in a starting phase. Such a thing as a reciprocal relationship between theology and music definitely exists, but it has not yet been theoretically developed enough. Correlation between musical and theological disciplines constitutes a very broad and complex discourse. Therefore this study would rather narrow the subject and put it in a specific context: Theology and Music in the XXI. Century. This paper is a text-based study; therefore it will be based on textual-analysis with elements of the text hermeneutics.Keywords: music, theology, reciprocal relationship between theology and music, XXI Century
Procedia PDF Downloads 159405 Common Sense Leadership in the Example of Turkish Political Leader Devlet Bahçeli
Authors: B. Gültekin, T. Gültekin
Abstract:
Peace diplomacy is the most important international tool to maintain peace all over the World. This study consists of three parts. In the first part, the leadership of Devlet Bahçeli, leader of the Nationalist Movement Party, will be introduced as a tool of peace communication and peace management. Also, in this part, peace communication will be explained by the peace leadership traits of Devlet Bahçeli, who is one of the efficient political leaders representing the concepts of compromise and agreement on different sides of politics. In the second part of study, it is aimed to analyze Devlet Bahçeli’s leadership within the frame of peace communication and the final part of this study is about creating an original public communication model for public diplomacy based on Devlet Bahçeli as an example. As a result, the main purpose of this study is to develop an original peace communication model including peace modules, peace management projects, original dialogue procedures and protocols exhibited in the policies of Devlet Bahçeli. The political leadership represented by Devlet Bahçeli inspires political leaders to provide peace communication. In this study, principles and policies of peace leadership of Devlet Bahçeli will be explained as an original model on a peace communication platform.Keywords: public diplomacy, dialogue management, peace leadership, peace diplomacy
Procedia PDF Downloads 171404 The Radicalization of Islam in the Syrian Conflict: A Systematic Review from the Interreligious Dialogue Perspective
Authors: Cosette Maiky
Abstract:
Seven years have passed since the crisis erupted and the list of challenges to peacebuilding and interreligious dialogue is still growing ever more discouraging: Violence, displacement, sectarianism, discrimination, radicalisation, fragmentation, and collapse of various social and economic infrastructure have notoriously plagued the war-torn country. As the situation in Syria and neighbouring countries is still creating a real concern about the future of the social cohesion and the coexistence in the region, in her function as Field Expert on Arab Countries at King Abdullah bin Abdelaziz Centre for Interreligious and Intercultural Dialogue, the author shall present a systematic review paper that focuses on the radicalization of Islam in Syria. The exercise was based on a series of research questions that guided both the review of literature as well as the interviews. Their relative meaningfulness shall be assessed and trade-offs discussed in each case to ensure that key questions were addressed and to avoid unnecessary effort. There was an element of flexibility, as the assessment progressed, to further provide and inject additional generic questions. The main sources for the information were: Documents and literature with a direct bearing on the issues of relevance collected in all available formats and information collected through key informant interviews. This latter was particularly helpful to understand what some of the capacity constraints are, as well as the gaps, enablers and barriers. Respondents were selected among those who are engaged in IRD activities clearly linked to peacebuilding (i.e. religious leaders, leaders in religious communities, peace actors, religious actors, conflict parties, minority groups, women initiatives, youth initiatives, civil society organizations, academia, etc.), with relevant professional qualifications and work experience. During the research process, the Consultant carefully took account of sensitivities around terminologies as well as a highly insecure and dynamic context. The Consultant (Arabic native speaker), therefore, adapted terminologies while conducting interviews according to the area and respondent. Findings revealed: the deep ideological polarization and lack of trust dividing communities and preventing meaningful dialogue opportunities; the challenge of prioritizing IRD and peacebuilding work in the context of such a severe humanitarian crisis facing the country; the need to engage religious leaders and institutions in peacebuilding processes and initiatives, the need to have institutions with specific IRD mandate, which can have a sustainable influence on peace through various levels of interventions (from grassroots level to policy and research), and lastly, the need to address stigma in media representation of Muslims and Islam. While religion and religious agendas have been massively used for political issues and power play in the Middle East – and elsewhere, more extensive policy and research efforts are needed to highlight the positive role of religion and religious actors in dialogue and peacebuilding processes.Keywords: radicalisation, Islam, Syria, conflict
Procedia PDF Downloads 174403 Mindfulness in a Secular Age: Framing and Contextualising the Conversation in the Irish Context
Authors: Thomas P. Carroll
Abstract:
The phenomenon of mindfulness has become ever more popular in an increasingly pluralist Western society. Mindfulness practice has penetrated secular contexts that would otherwise be closed to religious influence, including state schools, hospitals, and commerce. The contemporary understanding of mindfulness has its origins in Buddhist meditation. However, since Jon Kabat-Zinn’s pioneering work in Mindfulness-Based Interventions, the concept has developed and sometimes mutated into various forms of practice which are disembedded from their original spiritual philosophy. This project will explore the spiritual climate within which mindfulness is currently flourishing through dialogue with three interlocutors. The first interlocutor is the Canadian philosopher Charles Taylor whose seminal work, ‘A Secular Age’, outlines three distinct modes of secularity. Taylor examines how the conditions of belief have changed and how the self seeks meaning in an age where belief in the divine is no longer axiomatic. The next interlocutor is Czech theologian and psychotherapist Tomáš Halík who offers a unique perspective of a Catholic who belongs to a section of society outnumbered by secular counterparts, with a theological hermeneutic best described as 'Den Fremden verstehen- understanding the stranger'. Finally, Irish theologian Michael Paul Gallagher offers a theological perspective on how the Christian faith can be translated into dialogue with Irish secular culture, as well as addressing the crisis of imagination and culture rather than the crisis of faith in Ireland. These interlocutors will illustrate that there are sometimes striking differences in how to interpret the religious signs of the times. However, these approaches also reveal significant similarities in how they address and explore the meaning of religious belief and experience today. In this way, themes will emerge that will help to frame the conversation about mindfulness in the West. These themes will include; the failure of the secularization thesis to pass, the growth of a diverse marketplace of religions and beliefs and the growth of a demographic who identify as spiritual but not religious. Such research is paramount in enabling a richer dialogue between Christian faith and mindfulness in a fragmented, postmodern Western context.Keywords: culture, mindfulness, secularism, spirituality
Procedia PDF Downloads 115