Search results for: drug prediction
4104 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine
Procedia PDF Downloads 3594103 Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin
Authors: Dipali Nagaonkar, Mahendra Rai
Abstract:
Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications.Keywords: Chitosan nanoparticles, green synthesis, Pongamia pinnata, quercetin
Procedia PDF Downloads 5764102 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery
Authors: Yogita Patil-Sen
Abstract:
Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery
Procedia PDF Downloads 3364101 European Drug Serialization: Securing the Pharmaceutical Drug Supply Chain from Counterfeiters
Authors: Vikram Chowdhary, Marek Vins
Abstract:
The profitability of the pharmaceutical drug business has attracted considerable interest, but it also faces significant challenges. Counterfeiters take advantage of the industry's vulnerabilities, which are further exacerbated by the globalization of the market, online trading, and complex supply chains. Governments and organizations worldwide are dedicated to creating a secure environment that ensures a consistent and genuine supply of pharmaceutical products. In 2019, the European authorities implemented regulation EU 2016/161 to strengthen traceability and transparency throughout the entire drug supply chain. This regulation requires the addition of enhanced security features, such as serializing items to the saleable unit level or individual packs. Despite these efforts, the incidents of pharmaceutical counterfeiting continue to rise globally, with regulated territories being particularly affected. This paper examines the effectiveness of the drug serialization system implemented by European authorities. By conducting a systematic literature review, we assess the implementation of drug serialization and explore the potential benefits of integrating emerging digital technologies, such as RFID and Blockchain, to improve traceability and management. The objective is to fortify pharmaceutical supply chains against counterfeiters and manipulators and ensure their security.Keywords: blockchain, counterfeit drugs, EU drug serialization, pharmaceutical industry, RFID
Procedia PDF Downloads 1114100 Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium’s metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB’s known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs.Keywords: pharmacophore, molecular docking, lipoate protein ligase B (LipB), ADMET, TOPKAT
Procedia PDF Downloads 4244099 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 2364098 Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android
Authors: Arvinder Kaur, Deepti Chopra
Abstract:
Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android.Keywords: android, bug prediction, mining software repositories, software entropy
Procedia PDF Downloads 5784097 Psycho-Social Issues: Drug Use and Abuse as a Social Problem among Secondary School Youths in Urban Centres of Benue State, Nigeria
Authors: Ode Kenneth Ogbu
Abstract:
This study was designed as a survey to investigate the incidence of use and abuse of drug as a social problem among the Nigeria youths in the secondary schools in urban centres of Benue state. 500 SS 3 and fresh secondary school graduates in remedial science class of Benue State University Makurdi with mean age of 16.8 were randomly sampled for the study. An instrument called drug use and abuse perception questionnaire (DAPQ) with a reliability coefficient of 74 were administered to the students. Only 337 copies of the questionnaire were properly completed and returned which reduced the sample size of 337. The data were subjected to factor analysis. X2 statistic and frequency distribution using split half method. The result of the analysis showed that: the DAPQ yield seven baseline factors responsible for drug use and abuse; there was appreciable evidence that the study subjects used drugs (42.1%); alcohol topped the list of the drugs consumed; most students use their pocket money to buy drugs; drugs were purchased from unconventional, hidden places and 13 out of the 20 items of DAPQ were perceived as significant factors in drug use and abuse. The paper recommends proper intervention of government, parents and NGO’S among students to reduce cases of drug abuse.Keywords: drug abuse, psychology, psychiatry, students
Procedia PDF Downloads 3094096 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.Keywords: chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction
Procedia PDF Downloads 5684095 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 4364094 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 3994093 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4684092 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor
Authors: Gajanan M. Sonwane
Abstract:
Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine
Procedia PDF Downloads 1164091 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin
Authors: Tasnuva Tamanna, Aimin Yu
Abstract:
Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.Keywords: drug loading, nanoparticles, polydopamine, rifampicin
Procedia PDF Downloads 4784090 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets
Authors: Shahana Sharmin
Abstract:
In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets
Procedia PDF Downloads 4144089 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: adaptive methods, LSE, MSE, prediction of financial Markets
Procedia PDF Downloads 3364088 Surface Modified Polyamidoamine Dendrimer with Gallic Acid Overcomes Drug Resistance in Colon Cancer Cells HCT-116
Authors: Khushbu Priyadarshi, Chandramani Pathak
Abstract:
Cancer cells can develop resistance to conventional therapies especially chemotherapeutic drugs. Resistance to chemotherapy is another challenge in cancer therapeutics. Therefore, it is important to address this issue. Gallic acid (GA) is a natural plant compound that exhibits various biological properties including anti-proliferative, anti-inflammatory, anti-oxidant and anti-bacterial. Despite of the wide spectrum biological properties GA has cytotoxic response and low bioavailability. To overcome this problem, GA was conjugated with the Polyamidoamine(PAMAM) dendrimer for improving the bioavailability and efficient delivery in drug-resistant HCT-116 Colon Cancer cells. Gallic acid was covalently linked to 4.0 G PAMAM dendrimer. PAMAM dendrimer is well established nanocarrier but has cytotoxicity due to presence of amphiphilic nature of amino group. In our study we have modified surface of PAMAM dendrimer with Gallic acid and examine their anti-proliferative effects in drug-resistant HCT-116 cells. Further, drug-resistant colon cancer cells were established and thereafter treated with different concentration of PAMAM-GA to examine their anti-proliferative potential. Our results show that PAMAM-GA conjugate induces apoptotic cell death in HCT-116 and drug-resistant cells observed by Annexin-PI staining. In addition, it also shows that multidrug-resistant drug transporter P-gp protein expression was downregulated with increasing the concentration of GA conjugate. After that we also observed the significant difference in Rh123 efflux and accumulation in drug sensitive and drug-resistant cancer cells. Thus, our study suggests that conjugation of anti-cancer agents with PAMAM could improve drug resistant property and cytotoxic response to treatment of cancer.Keywords: drug resistance, gallic acid, PAMAM dendrimer, P-glycoprotein
Procedia PDF Downloads 1494087 Development and Evaluation of Simvastatin Based Self Nanoemulsifying Drug Delivery System (SNEDDS) for Treatment of Alzheimer's Disease
Authors: Hardeep
Abstract:
The aim of this research work to improve the solubility and bioavailability of Simvastatin using a self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Validation of a method for accuracy, repeatability, Interday and intraday precision, ruggedness, and robustness were within acceptable limits. The liquid SNEDDS was prepared and optimized using a ternary phase diagram, thermodynamic, centrifugation and cloud point studies. The globule size of optimized formulations was less than 200 nm which could be an acceptable nanoemulsion size range. The mean droplet size, drug loading, PDI and zeta potential were found to be 141.0 nm, 92.22%, 0.23 and -10.13 mV and 153.5nm, 93.89 % ,0.41 and -11.7 mV and 164.26 nm, 95.26% , 0.41 and -10.66mV respectively.Keywords: simvastatin, self nanoemulsifying drug delivery system, solubility, bioavailability
Procedia PDF Downloads 2014086 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3634085 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment
Authors: Nagasamy Venkatesh Dhandapani
Abstract:
The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.Keywords: levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics
Procedia PDF Downloads 3164084 Development of the Drug Abuse Health Information System in Thai Community
Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Sivaporn Aungwattana, Decha Tamdee, Wongamporn Pinyavong
Abstract:
Drug addiction represents one of the most important public health issues in both developed and developing countries. The purpose of this study was to develop a drug abuse health information in a community in Northern Thailand using developmental research design. The developmental researchers performed four phases to develop drug abuse health information, including 1) synthesizing knowledge related to drug abuse prevention and identifying the components of drug abuse health information; 2) developing the system in mobile application and website; 3) implementing drug abuse health information in the rural community; and 4) evaluating the feasibility of drug abuse health information. Data collection involved both qualitative and quantitative procedures. The qualitative data and quantitative data were analyzed using content analysis and descriptive statistics, respectively. The findings of this study showed that drug abuse health information consisted of five sections, including drug-related prevention knowledge for teens, drug-related knowledge for adults and professionals, the database for drug dependence treatment centers, self-administered questionnaires, and supportive counseling sections. First, in drug-related prevention knowledge for teens, the developmental researchers designed four infographics and animation to provide drug-related prevention knowledge, including types of illegal drugs, causes of drug abuse, consequences of drug abuse, drug abuse diagnosis and treatment, and drug abuse prevention. Second, in drug-related knowledge for adults and professionals, the developmental researchers developed many documents in a form of PDF file to provide drug-related knowledge, including types of illegal drugs, causes of drug abuse, drug abuse prevention, and relapse prevention guideline. Third, database for drug dependence treatment centers included the place, direction map, operation time, and the way for contacting all drug dependence treatment centers in Thailand. Fourth, self-administered questionnaires comprised preventive drugs behavior questionnaire, drug abuse knowledge questionnaire, the stages of change readiness and treatment eagerness to drug use scale, substance use behaviors questionnaire, tobacco use behaviors questionnaire, stress screening, and depression screening. Finally, for supportive counseling, the developmental researchers designed chatting box through which each user could write and send their concerns to counselors individually. Results from evaluation process showed that 651 participants used drug abuse health information via mobile application and website. Among all users, 48.8% were males and 51.2% were females. More than half (55.3%) were 15-20 years old and most of them (88.0%) were Buddhists. Most users reported ever getting knowledge related to drugs (86.1%), and drinking alcohol (94.2%) while some of them (6.9%) reported ever using tobacco. For satisfaction with using the drug abuse health information, more than half of users reflected that the contents of drug abuse health information were interesting (59%), up-to date (61%), and highly useful to their self-study (59%) at high level. In addition, half of them were satisfied with the design in terms of infographics (54%) and animation (51%). Thus, this drug abuse health information can be adopted to explore drug abuse situation and serves as a tool to prevent drug abuse and addiction among Thai community people.Keywords: drug addiction, health informatics, big data, development research
Procedia PDF Downloads 1124083 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6054082 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department
Authors: Chaiyaporn Yuksen
Abstract:
Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.Keywords: clinical prediction score, SVT, recurrence, emergency department
Procedia PDF Downloads 1554081 Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique
Authors: Tamer M. Shehata, Heba S. Elsewedy, Mashel Al Dosary, Alaa Elshehry, Mohamed A. Khedr, Maged E. Mohamed
Abstract:
Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D.Keywords: solid dispersion, 2, 4-D solubility, carragenan induced edema
Procedia PDF Downloads 4534080 Sphingosomes: Potential Anti-Cancer Vectors for the Delivery of Doxorubicin
Authors: Brajesh Tiwari, Yuvraj Dangi, Abhishek Jain, Ashok Jain
Abstract:
The purpose of the investigation was to evaluate the potential of sphingosomes as nanoscale drug delivery units for site-specific delivery of anti-cancer agents. Doxorubicin Hydrochloride (DOX) was selected as a model anti-cancer agent. Sphingosomes were prepared and loaded with DOX and optimized for size and drug loading. The formulations were characterized by Malvern zeta-seizer and Transmission Electron Microscopy (TEM) studies. Sphingosomal formulations were further evaluated for in-vitro drug release study under various pH profiles. The in-vitro drug release study showed an initial rapid release of the drug followed by a slow controlled release. In vivo studies of optimized formulations and free drug were performed on albino rats for comparison of drug plasma concentration. The in- vivo study revealed that the prepared system enabled DOX to have had enhanced circulation time, longer half-life and lower elimination rate kinetics as compared to free drug. Further, it can be interpreted that the formulation would selectively enter highly porous mass of tumor cells and at the same time spare normal tissues. To summarize, the use of sphingosomes as carriers of anti-cancer drugs may prove to be a fascinating approach that would selectively localize in the tumor mass, increasing the therapeutic margin of safety while reducing the side effects associated with anti-cancer agents.Keywords: sphingosomes, anti-cancer, doxorubicin, formulation
Procedia PDF Downloads 3034079 Development and Characterization Self-Nanoemulsifying Drug Delivery Systems of Poorly Soluble Drug Dutasteride
Authors: Rajinikanth Siddalingam, Poonguzhali Subramanian
Abstract:
The present study aims to prepare and evaluate the self-nano emulsifying drug delivery (SNEDDS) system to enhance the dissolution rate of a poorly soluble drug dutasteride. The formulation was prepared using capryol PGMC, Cremophor EL, and polyethylene glycol (PEG) 400 as oil, surfactant and co-surfactant, respectively. The pseudo-ternary phase diagrams with presence and absence of drug were plotted to find out the nano emulsification range and also to evaluate the effect of dutasteride on the emulsification behavior of the phases. Prepared SNEDDS formulations were evaluated for its particle size distribution, nano emulsifying properties, robustness to dilution, self-emulsification time, turbidity measurement, drug content and in-vitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze-thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The particle size, zeta potential and polydispersity index of the optimized formulation found to be 35.45 nm, -15.45 and 0.19, respectively. The in vitro results are revealed that the prepared formulation enhanced the dissolution rate of dutasteride significantly as compared with pure drug. The in vivo studies in was conducted using rats and the results are revealed that SNEDDS formulation has enhanced the bioavailability of dutasteride drug significantly as compared with raw drug. Based the results, it was concluded that the dutasteride-loaded SNEDDS shows potential to enhance the dissolution of dutasteride, thus improving the bioavailability and therapeutic effects.Keywords: self-emulsifying drug delivery system, dutasteride, enhancement of bioavailability, dissolution enhancement
Procedia PDF Downloads 2664078 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 3064077 Evaluation of a Potential Metabolism-Mediated Drug-Drug Interaction between Carvedilol and Fluvoxamine in Rats
Authors: Ana-Maria Gheldiu, Bianca M. Abrudan, Maria A. Neag, Laurian Vlase, Dana M. Muntean
Abstract:
Background information: The objective of this study was to investigate the effect of multiple-dose fluvoxamine on the pharmacokinetic profile of single-dose carvedilol in rats, in order to evaluate this possible drug-drug pharmacokinetic interaction. Methods: A preclinical study, in 28 white male Wistar rats, was conducted. Each rat was cannulated on the femoral vein, prior to being connected to BASi Culex ABC®. Carvedilol was orally administrated in rats (3.57 mg/kg body mass (b.m.)) in the absence of fluvoxamine or after a pre-treatment with multiple oral doses of fluvoxamine (14.28 mg/kg b.m.). The plasma concentrations of carvedilol were estimated by high performance liquid chromatography-tandem mass spectrometry. The pharmacokinetic parameters of carvedilol were analyzed by non-compartmental method. Results: After carvediol co-administration with fluvoxamine, an approximately 2-fold increase in the exposure of carvedilol was observed, considering the significantly elevated value of the total area under the concentration versus time curve (AUC₀₋∞). Moreover, an increase by approximately 145% of the peak plasma concentration was found, as well as an augmentation by approximately 230% of the half life time of carvedilol was observed. Conclusion: Fluvoxamine co-administration led to a significant alteration of carvedilol’s pharmacokinetic profile in rats, these effects could be explained by the existence of a drug-drug interaction mediated by CYP2D6 inhibition. Acknowledgement: This work was supported by CNCS Romania – project PNII-RU-TE-2014-4-0242.Keywords: carvedilol, fluvoxamine, drug-drug pharmacokinetic interaction, rats
Procedia PDF Downloads 2744076 Formulation and Evaluation of Ethosomes of Plumeria indica Linn. Flowers
Authors: Sumeet Dwivedi, Shweta Shriwas, Raghvendra Dubey
Abstract:
The number of products based on new drug delivery systems has significantly increased in the past few years, and this growth is expected to continue in the near future. These biopharmaceuticals present challenges to drug delivery scientists because of their unique nature and difficulty in delivery through conventional routes. Therefore, future research will focus on the delivery of these complex molecules through different routes, including oral, nasal, pulmonary, vaginal, rectal, etc. The aim of present study was to formulate and evaluate ethosomes of Plumeria indica flowers which may deliver the drug to targeted site more efficiently than marketed preparation and also overcome the problems related with oral administration of drug. The formulations were prepared with ethanol, lecithin, propylene glycol and were evaluated.Keywords: ethosomes, herbal extract, plumeria alba, lecithin
Procedia PDF Downloads 2634075 Drug-Drug Plasma Protein Binding Interactions of Ivacaftor
Authors: Elena K. Schneider, Johnny X. Huang, Vincenzo Carbone, Mark Baker, Mohammad A. K. Azad, Matthew A. Cooper, Jian Li, Tony Velkov
Abstract:
Ivacaftor is a novel CF trans-membrane conductance regulator (CFTR) potentiator that improves the pulmonary function for cystic fibrosis patients bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs that compete for the same plasma protein binding sites and impact the free drug concentration. This in turn could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1-acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site selective probes. Due to their high plasma protein binding affinities, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole and loratadine. The significance of these drug-drug interactions is interpreted in terms of the pharmacodynamic/pharmacokinetic parameters and molecular docking simulations. The translational outcomes of the data are presented as recommendations for a staggered treatment regimen for future clinical trials which aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor.Keywords: human α-1-acid glycoprotein, binding affinity, human serum albumin, ivacaftor, cystic fibrosis
Procedia PDF Downloads 309